Зависимость электрического сопротивления металлов от температуры

У металлов, не обладающих сверхпроводимостью, при низких температурах из-за наличия примесей наблюдается область 1 – область остаточного сопротивления, почти не зависящая от температуры (рис. 10.5). Остаточное сопротивление – r ост тем меньше, чем чище металл.

Рис. 10.5. Зависимость удельного сопротивления металла от температуры

Быстрый рост удельного сопротивления при низких температурах до температуры Дебая Q д может быть объяснен возбуждением новых частот тепловых колебаний решетки, при которых происходит рассеяние носителей заряда – область 2.

При Т > Q д , когда спектр колебаний возбужден полностью, увеличение амплитуды колебаний с ростом температуры приводит к линейному росту сопротивления примерно до Т пл – область 3. При нарушении периодичности структуры электрон испытывает рассеяние, приводящее к изменению направления движения, конечным длинам свободного пробега и проводимости металла. Энергия электронов проводимости в металлах составляет 3–15 эВ, что соответствует длинам волн 3–7 Å. Поэтому любые нарушения периодичности, обусловленные примесями, дефектами, поверхностью кристалла или тепловыми колебаниями атомов (фононами) вызывают рост удельного сопротивления металла.

Проведем качественный анализ температурной зависимости удельного сопротивления металлов. Электронный газ в металлах является вырожденным и основным механизмом рассеяния электронов в области высоких температур является рассеяние на фононах.

При понижения температуры до абсолютного нуля сопротивление нормальных металлов стремится к постоянному значению – остаточному сопротивлению. Исключением из этого правила являются сверхпроводящие металлы и сплавы, в которых сопротивление исчезает ниже некоторой критической температуры Тсв (температура перехода в сверхпроводящее состояние).

При увеличении температуры, отклонение удельного сопротивления от линейной зависимости у большинства металлов наступает вблизи температуры плавления Тпл . Некоторое отступление от линейной зависимости может наблюдаться у ферромагнитных металлов, в которых происходит дополнительное рассеяние электронов на нарушениях спинового порядка.

При достижении температуры плавления и переходе в жидкое состояние у большинства металлов наблюдается резкое увеличение удельного сопротивления и у некоторых его уменьшение. Если плавление металла или сплава сопровождается увеличением объема, то удельное сопротивление повышается в два–четыре раза (например, у ртути в 4 раза).

У металлов, объем которых при плавлении уменьшается, наоборот, происходит понижение удельного сопротивления (у галлия на 53%, у сурьмы –29% и у висмута –54%) . Подобная аномалия может быть объяснена возрастанием плотности и модуля сжимаемости при переходе этих металлов из твердого в жидкое состояние. У некоторых расплавленных (жидких) металлов удельное сопротивление с ростом температуры при постоянном объеме перестает расти, у других оно растет более медленно, чем в твердом состоянии. Такие аномалии, по-видимому, можно связать с явлениями разупорядочения решетки, которые неодинаково происходят в различных металлах при переходе их из одного агрегатного состояния в другое.

Важной характеристикой металлов является температурный коэффициент удельного электрического сопротивления, показывающий относительное изменение удельного сопротивления при изменении температуры на один Кельвин (градус)

ar– положительно, когда удельное сопротивление возрастает при повышении температуры. Очевидно, что величина ar также является функцией температуры. В области 3 линейной зависимости r ( T ) (см. рисунок 10.3) выполняется соотношение:

где r и ar– удельное сопротивление и температурный коэффициент удельного сопротивления при температуре T , а r – удельное сопротивление при температуре T . Экспериментальные данные показывают, что у большинства металлов ar при комнатной температуре примерно 0,004 К -1 .У ферромагнитных металлов значение ar несколько выше.

Остаточное удельное сопротивление металлов. Как говорилось выше, сопротивление нормальных металлов стремится к постоянному значению — остаточному сопротивлению, по мере снижения температуры до абсолютного нуля. У нормальных металлов (не сверхпроводников) остаточное сопротивление возникает из-за рассеяния электронов проводимости статическими дефектами

Общую чистоту и совершенство металлического проводника можно определять отношением сопротивлений r =R273/R4,2 K . Для стандартной меди чистоты 99,999 это отношение составляет 1000. Б óльших значений r можно достигнуть путем дополнительных зонных переплавок и приготовлением образцов в виде монокристаллов.

Обширный экспериментальный материал содержит многочисленные данные по измерению сопротивления в металлах, вызванному наличием в них примесей. Можно отметить следующие наиболее характерные изменения в металлах, вызываемые легированием. Во-первых, не считая фононных возмущений, примесь является локальным нарушением идеальности решетки совершенное во всех других отношениях. Во-вторых, легирование влияет на зонную структуру, сдвигая энергию Ферми и изменяя плотность состоянии и эффективную массу, т.е. параметры, частично определяющие идеальное сопротивление металла. В-третьих, легирование может менять упругие константы и, соответственно, колебательный спектр решетки, оказывая влияние на идеальное сопротивление.

Общее удельное сопротивление проводника при температурах выше 0К складывается из остаточного сопротивления r ост и удельного сопротивления, обусловленного рассеянием на тепловых колебаниях решетки – r Т

Это соотношение известно как правило Матиссена об аддитивности удельного сопротивления. Часто, однако, наблюдаются значительные отклонения от правила Матиссена , причем некоторые их этих отклонений могут говорить не в пользу применимости основных факторов, влияющих на сопротивление металлов при введении в них примесей. Однако второй и третий факторы, отмеченные в начале этого раздела, также дают заметный вклад. Но, все же более сильное воздействие на сопротивление разбавленных твердых растворов оказывает первый фактор.

Читайте также:  Полозья для колясок на лестнице

Изменение остаточного сопротивления на 1 ат . % примеси для одновалентных металлов можно найти по правилу Линде, согласно которому

где a и b – константы, зависящие от природы металла и периода, который занимает в Периодической системе элементов примесный атом; ΔΖ – разность валентностей металла-растворителя и примесного атома. Значительный практический интерес представляют расчеты сопротивления, обусловленные вакансиями и внедренными атомами. Такие дефекты легко возникает при облучении образца частицами высоких энергий, например нейтронами из реактора или ионами из ускорителя.

§ 60. Зависимость сопротивления от температуры

Частицы проводника (молекулы, атомы, ионы), не участвующие в образовании тока, находятся в тепловом движении, а частицы, образующие ток, одновременно находятся в тепловом и в направленном движениях под действием электрического поля. Благодаря этому между частицами, образующими ток, и частицами, не участвующими в его образовании, происходят многочисленные столкновения, при которых первые отдают часть переносимой ими энергии источника тока вторым. Чем больше столкновений, тем меньше скорость упорядоченного движения частиц, образующих ток. Как видно из формулы I = enνS, снижение скорости приводит к уменьшению силы тока. Скалярная величина, характеризующая свойство проводника уменьшать силу тока, называется сопротивлением проводника. Из формулы закона Ома сопротивление Ом – сопротивление проводника, в котором получается ток силой в 1 а при напряжении на концах проводника в 1 в.

Сопротивление проводника зависит от его длины l, поперечного сечения S и материала, который характеризуется удельным сопротивлением Чем длиннее проводник, тем больше за единицу времени столкновений частиц, образующих ток, с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника. Чем меньше поперечное сечение проводника, тем более плотным потоком идут частицы, образующие ток, и тем чаще их столкновения с частицами, не участвующими в его образовании, а поэтому тем больше и сопротивление проводника.

Под действием электрического поля частицы, образующие ток, между столкновениями движутся ускоренно, увеличивая свою кинетическую энергию за счет энергии поля. При столкновении с частицами, не образующими ток, они передают им часть своей кинетической энергии. Вследствие этого внутренняя энергия проводника увеличивается, что внешне проявляется в его нагревании. Рассмотрим, изменяется ли сопротивление проводника при его нагревании.


Рис. 81. Зависимость сопротивления металлов от температуры

В электрической цепи имеется моток стальной проволоки (струна, рис. 81, а). Замкнув цепь, начнем нагревать проволоку. Чем больше мы ее нагреваем, тем меньшую силу тока показывает амперметр. Ее уменьшение происходит от того, что при нагревании металлов их сопротивление увеличивается. Так, сопротивление волоска электрической лампочки, когда она не горит, приблизительно 20 ом, а при ее горении (2900° С) – 260 ом. При нагревании металла увеличивается тепловое движение электронов и скорость колебания ионов в кристаллической решетке, в результате этого возрастает число столкновений электронов, образующих ток, с ионами. Это и вызывает увеличение сопротивления проводника * . В металлах несвободные электроны очень прочно связаны с ионами, поэтому при нагревании металлов число свободных электронов практически не изменяется.

* ( Исходя из электронной теории, нельзя вывести точный закон зависимости сопротивления от температуры. Такой закон устанавливается квантовой теорией, в которой электрон рассматривается как частица, обладающая волновыми свойствами, а движение электрона проводимости через металл – как процесс распространения электронных волн, длина которых определяется соотношением де Бройля.)

Опыты показывают, что при изменении температуры проводников из различных веществ на одно и то же число градусов сопротивление их изменяется неодинаково. Например, если медный проводник имел сопротивление 1 ом, то после нагревания на 1°С он будет иметь сопротивление 1,004 ом, а вольфрамовый – 1,005 ом. Для характеристики зависимости сопротивления проводника от его температуры введена величина, называемая температурным коэффициентом сопротивления. Скалярная величина, измеряемая изменением сопротивления проводника в 1 ом, взятого при 0° С, от изменения его температуры на 1° С, называется температурным коэффициентом сопротивления α. Так, для вольфрама этот коэффициент равен 0,005 град -1 , для меди – 0,004 град -1 . Температурный коэффициент сопротивления зависит от температуры. Для металлов он с изменением температуры меняется мало. При небольшом интервале температур его считают постоянным для данного материала.

Читайте также:  Измерение сопротивления изоляции трансформатора напряжения

Выведем формулу, по которой рассчитывают сопротивление проводника с учетом его температуры. Допустим, что R – сопротивление проводника при 0°С, при нагревании на 1°С оно увеличится на αR, а при нагревании на – на αRt° и становится R = R + αR, или

Зависимость сопротивления металлов от температуры учитывается, например при изготовлении спиралей для электронагревательных приборов, ламп: длину проволоки спирали и допускаемую силу тока рассчитывают по их сопротивлению в нагретом состоянии. Зависимость сопротивления металлов от температуры используется в термометрах сопротивления, которые применяются для измерения температуры тепловых двигателей, газовых турбин, металла в доменных печах и т. д. Этот термометр состоит из тонкой платиновой (никелевой, железной) спирали, намотанной на каркас из фарфора и помещенной в защитный футляр. Ее концы включаются в электрическую цепь с амперметром, шкала которого проградуирована в градусах температуры. При нагревании спирали сила тока в цепи уменьшается, это вызывает перемещение стрелки амперметра, которая и показывает температуру.

Величина, обратная сопротивлению данного участка, цепи, называется электрической проводимостью проводника (электропроводностью). Электропроводность проводника Чем больше проводимость проводника, тем меньше его сопротивление и тем лучше он проводит ток. Наименование единицы электропроводности Проводимость проводника сопротивлением 1 ом называется сименс.

При понижении температуры сопротивление металлов уменьшается. Но есть металлы и сплавы, сопротивление которых при определенной для каждого металла и сплава низкой температуре резким скачком уменьшается и становится исчезающе малым – практически равным нулю (рис. 81, б). Наступает сверхпроводимость – проводник практически не обладает сопротивлением, и раз возбужденный в нем ток существует долгое время, пока проводник находится при температуре сверхпроводимости (в одном из опытов ток наблюдался более года). При пропускании через сверхпроводник тока плотностью 1200 а /мм 2 не наблюдалось выделения количества теплоты. Одновалентные металлы, являющиеся наилучшими проводниками тока, не переходят в сверхпроводящее состояние вплоть до предельно низких температур, при которых проводились опыты. Например, в этих опытах медь охлаждали до 0,0156°К, золото – до 0,0204° К. Если бы удалось получить сплавы со сверхпроводимостью при обычных температурах, то это имело бы огромное значение для электротехники.

Согласно современным представлениям, основной причиной сверхпроводимости является образование связанных электронных пар. При температуре сверхпроводимости между свободными электронами начинают действовать обменные силы, отчего электроны образуют связанные электронные пары. Такой электронный газ из связанных электронных пар обладает иными свойствами, чем обычный электронный газ – он движется в сверхпроводнике без трения об узлы кристаллической решетки.

Задача 24. Для изготовления спиралей электрической плитки мастерская получила моток нихромозой проволоки, на бирке которой было написано: "Масса 8,2 кг,Λ диаметр 0,5 мм". Определить, сколько спиралей можно изготовить из этой проволоки, если сопротивление спирали, не включенной в сеть, должно быть 22 ома. Плотность нихрома 8200 кг /м 3 .

Отсюда где S = πr 2 ; S = 3,14*0,0625 мм 2 ≈ 2*10 -7 м 2 .

Масса проволоки m = ρ1V, или m = ρ1lS, отсюда

Отв.: n = 1250 спиралей.

Задача 25. При температуре 20° С вольфрамовая спираль электрической лампочки имеет сопротивление 30 ом; при включении ее в сеть постоянного тока с напряжением 220 в по спирали идет ток 0,6 а. Определить температуру накала нити лампочки и напряженность стационарного электрического поля в нити лампы, если ее длина 550 мм.

Сопротивление спирали при горении лампы определим из формулы закона Ома для участка цепи:

тогда

Напряженность стационарного поля в нити лампы

На основании классической электронной теории проводимости металлов можно объяснить закон Джоуля-Ленца.

Упорядоченное движение электронов происходит под действием сил поля. Как и выше, будем считать, что в момент соударения с положительными ионами кристаллической решётки электроны полностью передают ей свою кинетическую энергию. К концу свободного пробега скорость электрона , а кинетическая энергия

(14.9)

Мощность, выделяемая единицей объёма металла (плотность мощности), равна произведению энергии одного электрона на число соударений в секундуи на концентрациюn электронов:

(14.10)

Учитывая (14.7), имеем

закон Джоуля-Ленца в дифференциальной форме.

Если нас интересует энергия, выделяемая проводником длиной ℓ, площадью поперечного сечения S за промежуток времени dt, то выражение (14.10) нужно умножить на объём проводника V=St и время dt:

Учитывая, что (гдеR– сопротивление проводника), получаем закон Джоуля-Ленца в виде

§ 14.3 Зависимость сопротивления металлов от температуры. Сверхпроводимость. Закон Видемана-Франца

Удельное сопротивление зависит не только от рода вещества, но и от его состояния, в частности, от температуры. Зависимость удельного сопротивления от температуры можно охарактеризовать, задавая температурный коэффициент сопротивления данного вещества:

(14.11)

Он даёт относительное приращение сопротивления при увеличении температуры на один градус.

Читайте также:  Как сделать нишу для светодиодной ленты

Температурный коэффициент сопротивления для данного вещества различен при разных температурах. Это показывает, что удельное сопротивление изменяется с температурой не по линейному закону, а зависит от неё более сложным образом.

где ρ – удельное сопротивление при 0ºС, ρ – его значение при температуре tºС.

Температурный коэффициент сопротивления может быть как положительным, так и отрицательным. У всех металлов сопротивление увеличивается с увеличением температуры, а следовательно для металлов

α >0. У всех электролитов в отличии от металлов сопротивление при нагревании всегда уменьшается. Сопротивление графита с повышением температуры также уменьшается. Для таких веществ α , т.е. чем больше , тем меньшую помеху для упорядоченного движения электронов представляют соударения. Электропроводимость обратно пропорциональна средней тепловой скорости . Тепловая скорость при повышении температуры возрастает пропорционально , что приводит к уменьшению электропроводимости и увеличению удельного сопротивления проводников. Анализируя формулу (14.7), можно, кроме того, объяснить зависимость γ и ρ от рода проводника.

При очень низких температурах порядка 1-8ºК сопротивление некоторых веществ резко падает в миллиарды раз и практически становится равным нулю.

Это явление, впервые открыто голландским физиком Г.Камерлинг-Оннесом в 1911 г.. называется сверхпроводимостью. В настоящее время сверхпроводимость установлена у целого ряда чистых элементов (свинца, олова, цинка, ртути, алюминия и др), а также у большого числа сплавов этих элементов друг с другом и с другими элементами. На рис. 14.3 схематически показана зависимость сопротивления сверхпроводников от температуры.

Теория сверхпроводимости была создана в 1958 г. Н.Н. Боголюбовым. Согласно этой теории, сверхпроводимость – это движение электронов в кристаллической решётке без соударений друг с другом и с атомами решётки. Все электроны проводимости движутся как один поток невязкой идеальной жидкости, не взаимодействуя между собой и с решёткой, т.е. не испытывая трения. Поэтому сопротивление сверхпроводников равно нулю. Сильное магнитное поле, проникая в сверхпроводник, отклоняет электроны, и, нарушая «ламинарное течение» электронного потока, вызывает соударение электронов с решёткой, т.е. возникает сопротивление.

В сверхпроводящем состоянии между электронами происходит обмен квантами энергии, что приводит к созданию между электронами сил притяжения, которые больше кулоновских сил отталкивания. При этом образуются пары электронов (куперовские пары) с взаимно скомпенсированными магнитными и механическими моментами. Такие пары электронов движутся в кристаллической решётке без сопротивления.

Одним из важнейших практических применений сверхпроводимости является применение её в электромагнитах со сверхпроводящей обмоткой. Если бы не существовало критического магнитного поля, разрушающего сверхпроводимость, то с помощью таких электромагнитов можно было бы получать магнитные поля в десятки и сотни миллионов ампер на сантиметр. Получать такие большие постоянные поля с помощью обычных электромагнитов невозможно, так как для этого потребовались бы колоссальные мощности, и был бы практически невозможен отвод тепла, выделяемого при поглощении обмоткой столь больших мощностей. В сверхпроводящем электромагните расход мощности источника тока ничтожен, а расход мощности на охлаждение обмотки до гелиевой температуре (4,2ºК) на четыре порядка ниже, чем в обычном электромагните, создающем такие же поля. Сверхпроводимость применяется и для создания систем памяти электронных математических машин (криотронные элементы памяти).

В 1853 г. Видеман и Франц опытным путём установили, что отношение теплопроводности λ к электропроводности γ для всех метал лов при одной и той же температуре одинаково и пропорционально их термодинамической температуре.

Это заставляет предполагать, что теплопроводность в металлах, так же как и электропроводность, обусловлена движением свободных электронов. Будем считать, что электроны подобны одноатомному газу, коэффициент теплопроводности которого, согласно кинетической теории газов, равен

(14.13)

(n – концентрация атомов, m -масса атома, -средняя длина свободного пробега электрона, cV-удельная теплоёмкость).

Для одноатомного газа

(k -постоянная Больцмана, М –молярная масса).

(14.14)

Из уравнений (14.7) и (14.14) находим отношение теплопроводности и электропроводности металла:

(14.15)

Из кинетической теории газов известно, что , тогда

(14.16)

( k и е – постоянные величины).

Поэтому отношение теплопроводности и электропроводности металла пропорционально термодинамической температуре, что и было установлено законом Видемана-Франца. Так как k =1,38∙10 -23 Дж/К; е = 1,6∙10 -19 Кл, то

(14.17)

Закон Видемана-Франца для большинства металлов выполняется при температуре 100-400 К, но при низкой температуре закон существенно нарушается. Имеются металлы (бериллий, марганец) которые совсем не подчиняются закону Видемана-Франца. Выход из непреодолимых противоречий был найден в квантовой электронной теории металлов.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *