Ток проводимости и ток смещения

Током проводимости называется движение носителей электрических зарядов под действием электрического поля.

Для выяснения особенностей протекания тока проводимости в объемных телах рассмотрим проводящее тело в виде бесконечного слоя (рис. 1.5). К этому телу подведены два точечных электрода, соединенные с источником. Ток внутри вещества сконцентрируется вблизи кратчайшего расстояния между электродами, однако меньшая его часть ответвится в глубь тела.

Для описания состояния такой системы необходимо знать скорость и направление движения носителей заряда в каждой точке области протекания тока внутри тела. Для этого вводится понятие плотности тока проводимости. Вектор плотности тока проводимости описывается следующим образом:

– количество носителей заряда в единице объема вещества;

– заряд носителя, Кл;

– вектор скорости движения носителей заряда, м/с.

Плотность тока проводимости является мерой тока, протекающего через единичную площадку, перпендикулярную вектору скорости движения носителей. Скорость носителей и плотность тока проводимости пропорциональны напряженности электрического поля:

электропроводность среды, См/м.

Электропроводность является коэффициентом пропорциональности между векторами плотности тока проводимости и напряженности электрического поля.

Формула (1.19) также относится к материальным уравнениями называется закономОма в дифференциальной форме.

Лучшими проводниками являются металлы. Максимальную электропроводность имеет серебро – 6.1*10 7 См/м. У меди она равна 5.7*10 7 См/м, а у алюминия – 3.2*10 7 См/м.

Если мы имеем дело с электрическим полем, постоянным во времени, тока проводимости достаточно. Однако в переменном поле только он не позволяет описать всю совокупность наблюдаемых явлений.

Рассмотрим цепь переменного тока с конденсатором. Переменный ток протекает между обкладками конденсатора и в том случае, когда между ними вакуум, то есть образо­вание тока проводимости невозможно. Соединительный провод, по которому течет ток проводимости, окружен кольцевыми линия­ми магнитного поля, которые как бы образуют «оболочку» вокруг него. Максвелл предположил, что эта «оболочка» не об­рывается у пластин конденсатора. Значит, переменное электрическое поле, так же как и ток проводимости, сопровождается появлением магнитного поля. Это дало Максвеллу основание для введения понятия тока сме­щения. Плотность тока смещения описывается формулой:

Природу тока смещения можно определить следующим образом. Всякое изменение электрического поля приводит к возникновению тока смещения.

Величина тока смещения прямо пропорциональна скорости изменения электрического поля.

2. Основные уравнения электродинамики

2.1. Первое уравнение Максвелла

Первое уравнение Максвелла является обобщением открытого Ампером закона полного тока. Ампер сформулировал этот закон следующим образом: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна току, пронизывающему контур:

L – замкнутый контур,

dl – векторный дифференциал длины контура: dl = ldl,

J – вектор плотности тока, пронизывающего контур,

S – произвольная поверхность, опирающаяся на контур L,

dS – векторный дифференциал поверхности: dS = ndS,

Читайте также:  Ral 1015 какой цвет название цвета

n – орт нормали к поверхности S, образующий с направлением обхода контура правовинтовую систему.

Форма замкнутого контура L может быть произвольной.

Под током, пронизывающим контур, Ампер понимал только ток проводимо­сти, что справедливо для постоянного во времени поля. В переменном поле необходимо учесть введенный Максвеллом ток смещения. При этом формула (2.1) примет вид:

Уравнение (2.2) записано для контура конечных размеров и называется первым уравнением Максвелла в интегральной форме.

К дифференциальной форме первого уравнения перейдем с помощью теоремы Стокса (формула (1.34), [6]). Она позволяет заменить циркуляцию векто­ра Н по контуру L интегралом от rot Н по поверхности S, опирающейся на этот контур:

Так как поверхность S выбрана произвольно, то равенство (2.3) может быть удовлетворено только в случае равенства подынтегральных выражений:

Равенство (2.4) называется первым уравнением Максвелла в дифференциальной форме. Это векторное уравнение эквивалентно трем скалярным уравне­ниям. В декартовой системе координат х, у, z они примут следующий вид:

Аналогичные уравнения в других системах координат могут быть получены с помощью формул перехода (2.5) – (2.7) или (2.11) – (2.13) [6].

Уравнения Максвелла

Теория электромагнитного поля, которая была предложена Фарадеем, была математически и логически завершена в работах Максвелла. При этом Максвелл выдвинул важную идею, согласно которой должна существовать «симметрия» во взаимозависимости электрического и магнитного поля. То есть, если переменное во времени магнитное поле создает вихревое электрическое поле, можно ожидать, что и меняющееся во времени электрическое поле должно порождать магнитное поле.

Действительно, электрическое поле создается двумя способами: зарядами (так создается кулоновское поле) и изменяющимся во времени магнитным полем (так создается индукционное поле). Однако до сих пор упоминался лишь один способ возникновения магнитного поля ‑ посредством тока. Поэтому естественно предположить, что и для магнитного поля должен существовать второй способ его возникновения.

Рассмотрим еще раз закон полного тока, определяющий циркуляцию магнитного поля,

,

где и – сила результирующего макротока и микротока, соответственно, сквозь поверхность, образованную замкнутым контуром .

Максвелл обобщил закон полного тока. Согласно его гипотезе, кроме токов (макротоков в проводниках и микротоков в магнетиках), должна существовать еще одна причина возникновения магнитного поля. С целью иллюстрации рассуждений Максвелла, рассмотрим предложенный им мысленный эксперимент.

Если в данной цепи (рис. 5.1) замкнуть ключ, то лампа при постоянном токе гореть не будет, поскольку емкость C – разрывает цепь постоянного тока. Но в моменты включения лампа будет вспыхивать.

Если в предложенной электрической цепи включить источник переменного тока – лампа будет гореть, но в то же время ясно, что электроны с одной обкладки на другую не переходят, поскольку между ними изолятор (или вакуум). С другой стороны с помощью соответствующего прибора, измеряющего магнитное поле, можно обнаружить, что в промежутке между обкладками существует магнитное поле (рис. 5.2).

Читайте также:  Светодиодные точечные светильники для подвесных потолков

Рис. 5.2. Иллюстрация возникновения тока смещения

Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение ток смещения. Максвелл определил плотность тока смещения в виде:

,

где ‑ вектор электрического смещения (именно название этого вектора дало название току смещения).

Теперь сумму тока проводимости и тока смещения можно назвать полным током. Его плотность:

.

Несмотря на кажущуюся общность, ток смещения эквивалентен току проводимости только в отношении способности создавать магнитное поле. Токи смещения существуют лишь там, где меняется со временем электрическое поле. В диэлектриках ток смещения состоит из двух существенно различных слагаемых. Поскольку вектор смещения равен , то отсюда видно, что плотность тока смещения складывается из «истинного» тока смещения и тока поляризации ‑ величины, обусловленной движением связанных зарядов. Очевидно, токи поляризации должны возбуждать магнитное поле, поскольку по своей природе эти токи не отличаются от токов проводимости. Самое «интересное» физическое свойство заключено в слагаемом , которое не связано ни с каким движением зарядов, а обусловлено только изменением электрического поля. Другими словами, даже в вакууме всякое изменение во времени электрического поля возбуждает в окружающем пространстве магнитное поле. Ток смещения в вакууме не выделяет джоулева тепла. Ток поляризации выделяет теплоту, связанную с трением в процессе поляризации диэлектрика.

Открытие Максвеллом тока смещения является чисто теоретическим выводом, однако данное открытие по своей значимости для физики аналогично открытию электромагнитной индукции Фарадеем.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: "Что-то тут концом пахнет". 8527 – | 8113 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ток смещения или абсорбционный ток — величина, прямо пропорциональная быстроте изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля.

Введение тока смещения позволило устранить противоречие [1] в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики.

Строго говоря, ток смещения не является [2] электрическим током, но измеряется в тех же единицах, что и электрический ток.

Точная формулировка

В вакууме, а также в любом веществе, в котором можно пренебречь поляризацией либо скоростью её изменения, током смещения (с точностью до универсального постоянного коэффициента) называется [3] поток вектора быстроты изменения электрического поля через некоторую поверхность [4] :

Читайте также:  Оформление плиткой туалета фото

(СИ)

(СГС)

В диэлектриках (и во всех веществах, где нельзя пренебречь изменением поляризации) используется следующее определение:

(СИ)

(СГС),

где D — вектор электрической индукции (исторически вектор D назывался электрическим смещением, отсюда и название «ток смещения»)

Соответственно, плотностью тока смещения в вакууме называется величина

(СИ)

(СГС)

а в диэлектриках — величина

(СИ)

(СГС)

В некоторых книгах плотность тока смещения называется просто «током смещения».

Ток смещения и ток проводимости

В природе можно выделить два вида токов: ток связанных зарядов и ток проводимости.

Ток связанных зарядов — это перемещение средних положений связанных электронов и ядер, составляющих молекулу, относительно центра молекулы.

Ток проводимости — это направленное движение на большие расстояния свободных зарядов (например, ионов или свободных электронов). В случае, если этот ток идёт не в веществе, а в свободном простанстве, нередко вместо термина «ток проводимости» употребляют термин «ток переноса». Иначе говоря, ток переноса или ток конвекции обусловлен переносом электрических зарядов в свободном пространстве заряженными частицами или телами под действием электрического поля.

Во времена Максвелла ток проводимости мог быть экспериментально зарегистрирован и измерен (например, амперметром, индикаторной лампой), тогда как движение связанных зарядов внутри диэлектриков могло быть лишь косвенно оценено.

Сумма тока связанных зарядов и быстроты изменения потока электрического поля была названа током смещения в диэлектриках.

При разрыве цепи постоянного тока и включении в неё конденсатора ток в разомкнутом контуре отсутствует. При питании такого разомкнутого контура от источника переменного напряжения в нём регистрируется переменный ток (при достаточно высокой частоте и ёмкости конденсатора загорается лампа, включённая последовательно с конденсатором). Для описания и объяснения «прохождения» переменного тока через конденсатор (разрыв по постоянному току) Максвелл ввёл понятие тока смещения.

Ток смещения существует и в проводниках, по которым течёт переменный ток проводимости, однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально советским физиком А. А. Эйхенвальдом, изучившим магнитное поле тока поляризации, который является частью тока смещения. В общем случае, токи проводимости и смещения в пространстве не разделены, они находятся в одном и том же объеме. Поэтому Максвелл ввёл понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока:

где j — плотность тока проводимости, jD — плотность тока смещения [5] .

В диэлектрике (например, в диэлектрике конденсатора) и в вакууме нет токов проводимости. Поэтому приведенная выше формула Максвелла пишется так —

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *