Система генератор двигатель постоянного тока

Система Г-Д как минимум состоит из трех электрических машин:

1. исполнительного электродвигателя М2, приводящего в действие механизм;

2. генератора G1, питающего исполнительный ЭД;

3. приводного электродвигателя Ml, вращающего якоря генератора G1 и образую-

щего с ним так называемый преобразователь.

Машины М2 и G1 – постоянного тока с независимым возбуждением.

Несмотря на это, система Г-Д может применяться при любом роде тока питающей сети.

Если сеть постоянного тока, то в качестве приводного двигателя М1 применяют ЭД параллельного возбуждения, а обмотки возбуждения всех машин получают питание от сети.

Если сеть переменного тока, используют асинхронный приводной ЭД. Для питания обмоток возбуждения L1G1 и LM2 в этом случае применяют четвертую машину – возбудитель G2. Это небольшой генератор постоянного тока с самовозбуждением. Он приводится во вращение тем же приводным электродвигателем М1 , что и генератор G1 ( рис. 7.1. ).

Рис. 7.1. Схема системы генератор – двигатель

Система действует следующим образом.

Сначала пускают приводной ЭД М1, якорь которого затем вращается постоянно в одну сторону с неизменной скоростью. Потом при помощи регулировочного резистора

( реостата возбуждения ) RP3 возбуждают возбудитель G2, создающий неизменное напряжение.

От него получают питание независимые обмотки возбуждения исполнительного электродвигателя LM2 и генератора L1G1.

В цепь первой включен регулировочный резистор RP2, в цепь второй – регулиро-

вочный резистор RP1 и переключатель SA, изменяющий направление тока в обмотке L1G1.

Перед пуском резистор RP1 должен быть полностью введен в цепь, а резистор RP2 – выведен.

Для пуска М2 переключатель SA устанавливают в одно из рабочих положений и

постепенно выводят резистор RP1, увеличивая этим ток возбуждения в обмотке L1G1.

Последний возбуждается и подает плавно возрастающее напряжение на якорную обмотку М2. По цепи якорей G1 и М2 протекает ток.

Так как М2 возбужден, его якорь начинает вращаться, и по мере возрастания напря-

жения, подве­денного к его якорю, увеличи­вается угловая скорость. При полностью выве-

денном резисторе RP1 напряжение G1 и угловая скорость М2 номинальные.

Для реверса переключателем SA изменяют направление тока в обмотке возбуждения L1G1. Генератор изменяет полярность напряжения, ток якорной цепи изменяет направление, и исполнительный двигатель М2 реверсируется.

Регулирование скорости вниз от номинальной выполняют, вводя в цепь обмотки возбуждения L1G1 регулировочный резистор RP1. Ток возбуждения, магнитный поток и напряжение генератора уменьшаются. Вследствие этого снижается напряжение, подведен­ное к обмотке якоря М2, и его угловая скорость уменьшается ( характеристики 3, 2 и 1 на

Регулирование скорости вверх от номи­нальной осуществляют, вводя в цепь обмот-

ки возбуждения М2 регулировочный резистор RP2, что уменьшает ток и поток воз­бужде-

ния, при этом скорость ЭД увеличивается ( характеристики 5, 6 и 7 на рис. 7.2. ).

Рис. 7.2. Механические характеристики исполнительного двигателя

в системе генератор – двигатель: 4 – естественная; 3, 2 и 1 – искусственные, полученные уменьшение напряжения на обмотке якоря М2; 5, 6 и 7 –искусствен-

ные, полученные ослаблением магнитного потока М2

Достоинства системы Г – Д :

1/. Широкий диапазон регулирования ( 1- 20, 1 – 30 ).

2/. Большая плавность регулирования.

3/. Экономичность регулирования.

4/. Простота регулирования.

Недостатки системы Г – Д :

1/. Большое количество Эл.машин.

2/. Дороговизна и громоздкость.

3/. Низкий КПД системы.

Рассмотренная система называется «система Г – Д в чистом виде» на практике не применяется. Это объясняется тем, что при работе с номинальным напряжением на якоре М2 внезапная остановка этого якоря ( например, под винт попала льдина ) приводит к резкому увеличению тока якорей двигателя М2 и генератора G1 до значения, равного пусковому.

Кроме того, такое увеличение тока приводит к увеличению нагрузки на приводной двигатель генератора. Это особенно опасно, если генератор G1 приводится во вращение дизелем. Как известно, дизели крайне чувствительны к перегрузкам ( не более 10% мощности в течение 1 часа ).

Развитие полупроводниковой техники позволило перейти от рассмотренной системы Г – Д к т.н. системам «управляемый вентильный преобразователь – двигатель», или, сокращенно, системам УВП – Д ( рис. 7.3. ).

Вентильный преобразователь выпрямляет напряжение и регулирует его в нужных пределах. Для питания цепей якоря двигателя применяют однополупериодные схемы с нулевым выводом ( рис. 7.3, а ) или двухполупериодные мостовые схемы ( рис.7.3., б ).

Рис. 7.3. Схемы включения якоря двигателей постоянного тока на вентильный преобразователь: с нулевым выводом ( а ); мостовая ( б )

В таких схемах обмотки возбуждения двигателей обычно получают питание от общей сети переменного тока через маломощные однофазные выпрямители.

Контрольные вопросы по теме :

1. Назовите основные элементы системы Г-Д в чистом виде.

Читайте также:  Варианты навесных шкафов для кухни

2. Как регулируют частоту вращения в системах Г-Д ?

3. Как производится реверс ИД в системах Г-Д ?

4. Назовите достоинства и недостатки системы Г-Д .

Занятие № 8

Практическая работа № 1

Тема : « Система Г – Д с противокомпаундным генератором.

Практическое использование систем Г – Д »

Цель работы : Где практически используется система Г-Д и как обеспечивается

защита системы при перегрузках.

| следующая лекция ==>
Пуском ЭД наз. процесс разгона ЭД от 0 до установившейся скорости. | Система Г-Д с противокомпаундным генератором (с ПКО).

Дата добавления: 2017-03-29 ; просмотров: 872 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Первоначально для питания двигателей использовался электромашинный управляемый преобразователь (система «генератор-двигатель») (рис. 4.13) [1; 2; 14].

Рис. 4.13. Схема системы «генератор-двигатель».

В пунктир заключён электромашинный преобразователь, включающий в себя гонный асинхронный двигатель и генератор постоянного тока. Такой преобразователь позволяет в широком диапазоне изменять напряжение на двигателе, изменяя ток возбуждения генератора (ОВГ). Очевидно, что в данном случае напряжение на выходе преобразователя определяется ЭДС генератора. Данная система позволяет обеспечить все возможные режимы работы двигателя. Механические характеристики двигателя (рис. 4.14) располагаются во всех 4 квадрантах. Основной режим работы двигателя в такой системе – это работа с постоянным магнитным потоком, то есть . Мы можем записать уравнения электромеханической и механической характеристик двигателя, полагая, что :

; (4.15)

, (4.16)

где – магнитный поток двигателя;

Rя – сопротивление якоря двигателя;

Rг – сопротивление якоря генератора.

Рис. 4.14. Механические характеристики двигателя в системе Г-Д

Как видим, механические характеристики представляют параллельные прямые, наклон которых несколько больше, чем у естественной характеристики двигателя (жесткость меньше) при Ф=const. Мы наблюдаем их во всех четырёх квадрантах, т.е. двигатель может работать во всех возможных режимах. Реверс двигателя осуществляется за счет изменения полярности тока в обмотке возбуждения генератора (ОВГ).

Данная система позволяет осуществить двухзонное регулирование:

1 зона – за счет изменения напряжения (ЭДС генератора);

2 зона – за счёт изменения магнитного потока двигателя при

номинальном напряжении (характеристики показаны пунктиром

Достоинством данной системы являются плавность регулирования, широкий диапазон регулирования, возможность получения линейных непрерывных характеристик во всём диапазоне регулирования и получение всех возможных режимов работы двигателя.

К недостаткам данной системы можно отнести: утроенную установленную мощность машин, низкий КПД, большую инерционность.

4.7.2. Система «тиристорный преобразователь – двигатель (ТП-Д)»

Основным типом преобразователей, применяемых в настоящее время для управления ДПТ, является тиристорный преобразователь, то есть статический полупроводниковый преобразователь. Эти преобразователи представляют управляемые реверсивные или нереверсивные, однофазные или трёхфазные выпрямители, собранные по мостовой или нулевой схеме [2; 5; 14]. Определённые перспективы развития тиристорных преобразователей связаны с использованием в них транзисторов, которые в настоящее время применяются в основном для импульсного регулирования напряжения.

Рассмотрим характеристики привода на примере использования в нем простейшего нереверсивного статического преобразователя.

Рис. 4.16.Схема нереверсивного тиристорного преобразователя
Рис. 4.16. Механические характеристики двигателя в схеме «нереверсивный преобразователь – двигатель»

Преобразователь включает в себя в общем случае согласующий трансформатор Т, два тиристора VS1 и VS2, сглаживающий дроссель L и систему импульсно-фазового управления (СИФУ). Преобразователь обеспечивает регулирование напряжения на Д за счёт изменения среднего значения ЭДС преобразователя. Это достигается регулированием с помощью СИФУ угла управления тиристорами (угол представляет собой угол задержки открытия тиристоров относительно момента, когда напряжение на анодах становится положительным). Зависимость среднего значения ЭДС от угла для многофазного преобразователя:

, (4.17)

где – число фаз преобразователя;

– амплитудное значение ЭДС преобразователя;

– ЭДС преобразователя при .

В связи с пульсирующим характером ЭДС на выходе преобразователя ток в цепи Д также пульсирует. Такой характер тока оказывает вредное влияние на работу Д: ухудшаются условия коммутации, возникают дополнительные потери на нагрев. Для уменьшения пульсаций тока в цепь якоря Д включают сглаживающий дроссель. Габариты преобразователя и его вес определяются размерами дросселя и трансформатора. Уравнения электромеханической и механической характеристик имеют вид:

, (4.18)

. (4.19)

– эквивалентное сопротивление преобразователя;

– число фаз преобразователя;

и – приведённые ко вторичной обмотке трансформатора индуктивное сопротивление рассеянья и активное сопротивление обмотки трансформатора;

– активное сопротивление обмотки дросселя L.

Особенностью характеристик Д при питании его от управляемого выпрямителя является наличие зоны прерывистых токов, в пределах которой характеристики нелинейны. Жесткость характеристик в этой зоне резко изменяется. Вследствие односторонней проводимости преобразователя характеристики располагаются в первом и четвёртом квадранте. Меньшим углам соответствует большая ЭДС и большая частота вращения. При ЭДС преобразователя равна нулю и мы имеем режим динамического торможения.

Читайте также:  Когда обрезать калину обыкновенную

Для получения характеристик Д во всех четырёх квадрантах используются реверсивные управляемые выпрямители, которые обычно составляют из двух нереверсивных. Работу во всех четырёх квадрантах можно также обеспечить и при использовании нереверсивных преобразователей, за счет изменения направления тока в обмотке возбуждения Д. В реверсивных преобразователях используют два основных принципа управления: совместное и раздельное.

Рис. 4.17, а. Система ТП-Д с реверсивным управляемым выпрямителем

Рис. 4.17, б. Механические характеристики двигателя в системе ТП-Д с реверсивным управляемым выпрямителем

При совместном управлении в работе участвуют все вентили (тиристоры). При этом от СИФУ импульсы управления, подаваемые на катодный комплект (VS1,VS3,VS5), и импульсы, подаваемые на анодный комплект (VS2,VS4,VS6), сдвинуты на угол, близкий к . Один комплект работает в выпрямительном режиме и проводит ток, а другой в инверторном режиме и ток не проводит. При этом между средними значениями ЭДС выпрямителя и инвертора устанавливается соотношение:

,

но за счёт разности мгновенных значений ЭДС между комплектами вентилей протекают токи, называемые уравнительными. Для их ограничения в схеме предусмотрены реакторы и . Вид механических характеристик Д зависит от способа согласования углов управления двумя комплектами вентилей. При линейном согласовании сумма углов выпрямителя и инвертора поддерживается равной (то есть ). При этом механические характеристики линейны во всех четырёх квадрантах и практически соответствуют характеристикам в системе Г-Д.

В ряде случаев для уменьшения уравнительных токов используют нелинейное согласование, при котором сумма углов управления и несколько отличается от . В этом случае уравнительные токи уменьшаются, но при переходе Д из двигательного в генераторный режим имеет место заметное увеличение скорости, то есть характеристики двигателя становятся нелинейными, поэтому этот способ согласования применяется редко.

Раздельное управление используется для полного исключения уравнительных токов. Сущность его состоит в том, что импульсы управления подаются только на один комплект вентилей, который в данный момент времени проводит ток. На второй комплект импульсы не подаются, и он закрыт. Управление преобразователем в этом случае осуществляется с помощью специального логического устройства. Это устройство осуществляет контроль за током преобразователя, обеспечивает в функции входного сигнала включение и выключение комплектов вентилей с небольшой паузой в 5-10 мс. В результате при переходе из одного режима работы в другой вблизи оси скорости наблюдается режим прерывистых токов, что приводит к нелинейности характеристик.

На сегодняшний день система ТП-Д получила наибольшее распространение из-за следующих достоинств:

1. Плавность и значительный диапазон регулирования скорости.

2. Высокая жесткость механических характеристик.

3. Высокий КПД электропривода (КПД преобразователя определяют КПД трансформатора 0,93-0,98 и КПД выпрямителя 0,9-0,92).

4. Малая инерционность, высокое быстродействие.

5. Бесшумность в работе, простота в обслуживании и эксплуатации.

Но наряду с этим существуют и следующие недостатки:

1. Односторонняя проводимость преобразователя.

2. Для получения характеристик во всех четырёх квадрантах необходимость использования двухкомплектного реверсивного преобразователя.

3. Напряжение на якоре двигателя имеет пульсирующий характер, что ухудшает его работу.

4. Необходимость сглаживания пульсаций приводит к применению сложных многофазных систем выпрямления и достаточно дорогих и тяжелых дросселей.

5. Работа управляемого выпрямителя характеризуется режимом прерывистых токов, что приводит к нелинейности характеристик.

6. С ростом диапазона регулирования скорости снижается коэффициент мощности (cosφ ≈ cosα; cosφ = cos(α + γ/2), где γ – угол коммутации).

7. Вентильный преобразователь вносит искажение в форму тока и напряжения источника питания.

8. Тиристорные преобразователи имеют невысокую помехозащищенность и малую перегрузочную способность.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 8921 – | 7229 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

26.07.2013

Для широкого и плавного регулирования частоты вращения электродвигателя постоянного тока применяется система генератор — двигатель (Г — Д). Основной принцип этой системы заключается в изменении приложенного к якорю двигателя напряжения при неизменном напряжении цепи возбуждения.

Система Г—Д (рис. 1) состоит из двигателя постоянного тока с независимым возбуждением М2, непосредственно связанного с рабочим механизмом (исполнительный двигатель). Он питается электрической энергией от генератора G, приводимого во вращение двигателем M1. Обмотки возбуждения генератора LG и двигателя LM2 получают питание от независимого источника постоянного тока с неизменным напряжением.

Первичный двигатель M1, вращающий якорь генератора G, представляет собой механический или электрический двигатель, причем приводимый им генератор не требует ни реверсирования, ни регулирования частоты вращения.

Читайте также:  Толщина бетонного пола в частном доме

Основным требованием, предъявляемым к первичному двигателю, является жесткость его механической характеристики, поэтому механические двигатели снабжают всережимными регуляторами частоты вращения, а электрические выбирают с жесткой характеристикой. Итак, первичный двигатель вращается с n = const и не реверсируется

Исполнительный двигатель управляется изменением значения и направления тока в обмотках возбуждения LG и LM2.

Механическая характеристика исполнительного двигателя в си-стеме Г—Д подобна механическим характеристикам двигателя с независимым возбуждением.

Естественная механическая характеристика 0 (см. рис. 2.3) возможна при номинальной частоте вращения генератора и отсутствии добавочных резисторов в цепях возбуждения генератора и исполнительного двигателя.

Ее наклон несколько больше, чем характеристики двигателя, работающего от сети, так как к сопротивлению якоря двигателя добавляется сопротивление якоря генератора.

При увеличении сопротивления реостата R1 уменьшаются ток возбуждения генератора и его э.д.с. Частота вращения двигателя М2 при этом уменьшится (характеристика 3).

Увеличение сопротивления реостата R2 вызывает уменьшение магнитного потока двигателя М2, частота вращения его увеличится (характеристика 2).

Двигатель реверсируется изменением направления тока в обмотке возбуждения генератора, при этом меняется направление его э. д. с. и тока в цепи якоря двигателя (магнитный поток двигателя остается неизменным).

Механические характеристики системы Г—Д жесткие. Для предотвращения поломок механизма необходимо ограничивать максимальный момент двигателя М2, что достигается смягчением характеристик.

Существуют следующие способы смягчения механических характеристик исполнительного двигателя: применение исполнительного электродвигателя со смешанным возбуждением; применение генератора со смешанным возбуждением и встречно включенной последовательной обмоткой.

Использование последовательной обмотки у исполнительного двигателя (рис. 2, а) позволяет получить более мягкие характеристики (рис. 2, б) по сравнению с характеристиками двигателя только с независимым возбуждением. Однако этот способ имеет недостаток, заключающийся в том, что при реверсировании двигателя изменяется направление тока в обмотке LM2.2 и она начинает противодействовать обмотке LM2.1, размагничивая двигатель. Во избежание этого последовательную обмотку включают не непосредственно в цепь якоря, а через мостовой полупроводниковый выпрямитель U, обеспечивающий постоянное направление тока в ней.
Применение размагничивающей обмотки генератора лишено указанного недостатка, поэтому используется наиболее часто.

Принцип смягчающего действия размагничивающей обмотки LG2 (рис. 3, а) заключается в следующем: с увеличением нагрузки исполнительного двигателя ток якоря увеличивается, размагничивающее действие обмотки возрастает, э.д.с. генератора и частота вращения двигателя уменьшаются.

Механические характеристики показаны на рис. 3, б. Искривленная форма характеристик 0,1,3 объясняется насыщением генератора. При насыщенном генераторе размагничивающее влияние обмотки меньше, чем при ненасыщенном, в начале участка характеристики более жесткие, а затем при больших нагрузках насыщение исчезает и характеристики становятся круче. Если же ток независимой обмотки возбуждения генератора невелик и насыщение отсутствует, характеристика становится прямой (характеристика 2).

При изменении направления тока в независимой обмотке возбуждения генератора меняется направление тока в якоре и последовательной обмотке возбуждения; таким образом, размагничивающее действие последовательной обмотки сохраняется.

Торможение исполнительного двигателя в системе Г — Д выполняют всеми методами, рассмотренными в статье "Регулирование частоты вращения, пуск, реверсирование и торможение электродвигателей постоянного тока".

Преимущества системы Г — Д:

  • возможность плавного регулирования частоты вращения в широком диапазоне до 16:1;
  • быстрый разгон исполнительного двигателя без помощи пускового реостата, т. е. с минимальными потерями энергии;
  • легкий пуск первичного двигателя, вращающего невозбужденный генератор;
  • быстрое и четкое торможение исполнительного электродвигателя.

Недостатки системы Г — Д:

  • низкий к.п.д. всей системы, вызванный многократным преобразованием энергии;
  • большие массы, стоимость и габаритные размеры, инерционность.

Следует отметить, что снижение к. п. д. в значительной мере компенсируется возможностью экономичного управления исполнительным электродвигателем при его пуске и регулировании частоты вращения. Эта экономия энергии особенно заметна в электроприводах, требующих частых пусков и реверсов двигателя.

Вместо системы Г — Д целесообразно использовать систему управляемый выпрямитель — двигатель постоянного тока (УВ—Д), силовая цепь которой приведена на рис. 4.

К якорю двигателя М приложено выпрямленное напряжение, регулируемое с помощью полупроводникового выпрямителя VI — V6, собранного по мостовой схеме. Силовая цепь выпрямителя состоит из трех тиристоров VI — V3 и трех неуправляемых диодов V4 — V6. Управление осуществляют изменением фазы открытия тиристоров.

Система УВ — Д имеет по сравнению с системой Г—Д следующие преимущества: отсутствует вращающийся преобразователь; высокий к.п.д. (к.п.д. выпрямителя 0,96 – 0,99); малая инерционность.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *