Схема управления автоматическим выключателем

Автоматический выключатель (автомат) служит для нечастых включений и отключений электрических цепей и защиты электроустановок от перегрузки и коротких замыканий, а также недопустимого снижения напряжения.

По сравнению с плавкими предохранителями автоматический выключатель обеспечивает более эффективную защиту, особенно в трёхфазных цепях, так как в случае, например, короткого замыкания производится отключение всех фаз сети. Предохранители в этом случае, как правило, отключают одну или две фазы, что создаёт неполнофазный режим, который также является аварийным.

Автоматический выключатель (рис. 1) состоит из следующих элементов: корпуса, дугогасительных камер, механизма управления, коммутирующего устройства, расцепителей.

Рис. 1. Автоматический выключатель, серия ВА 04-36 (устройство выключателя): 1- основание, 2- камера дугогасительная, 3, 4-пластины искрогасительные, 5-крышка, 6-пластины. 7-звено, 8-звено, 9-рукоятка, 10-рычаг опорный, 11-защелка, 12- рейка отключающая, 13- пластина термобиметаллическая, 14-расцепитель элетромагнитный, проводник гибкий, 16-токопровод, 17- контактодержатель, 18-контакты подвижные

Для включения автоматического выключателя, находящегося в расцепленном положении (положение «Отключено автоматически»), механизм должен быть взведен путем перемещения рукоятки 9 выключателя в направлении знака «О» до упора. При этом происходит зацепление рычага 10 с защелкой 11, а защелки – с отключающей рейкой 12. Последующее включение осуществляется перемещением рукоятки 9 в направление знака «1» до упора. Провал контактов и контактное сжатие при включении обеспечивается за счет смещения подвижных контактов 18 относительно контактодержателя 17.

Автоматическое отключение автомата происходит при повороте отключающей рейки 12 любым расцепителем независимо от положения рукоятки 9 выключателя. При этом рукоятка занимает промежуточное положение между знаками «О» и «1», указывая, что выключатель отключен автоматически. Дугогасительные камеры 2 установлены в каждом полюсе выключателя и представляют собой деионные решетки, состоящие из ряда стальных пластин 6.

Искрогасители, содержащие искрогасительные пластины 3 и 4, закреплены в крышке 5 выключателя перед отверстиями для выхода газов в каждом полюсе автоматического выключателя. Если в защищаемой цепи, хотя бы одного полюса ток достигает величины равной или превышающей значение уставки по току, срабатывает соответствующий расцепитель и выключатель отключает защищаемую цепь независимо от того, удерживается ли рукоятка во включенном положении или нет. Электромагнитный максимальный расцепитель тока 14 устанавливается в каждом полюсе выключателя. Расцепитель выполняет функцию мгновенной защиты от короткого замыкания.

Дугогасительные устройства необходимы в электрических аппаратах, коммутирующих большие токи, так как возникающая при разрыве тока электрическая дуга вызывает подгорание контактов. В автоматических выключателях применяются дугогасительные камеры с деионным гашением дуги. При деионном гашении дуги (рис. 2.) над контактами 1, помещенными внутри дугогасительной камеры 2, располагается решетка из стальных пластин 3. При размыкании контактов образовавшаяся между ними дуга потоком воздуха выдувается вверх, попадает в зону металлической решетки и быстро гасится.

Рис. 2. Устройство дугогасительной камеры автоматического выключателя: 1- контакты, 2- корпус дугогасительной камеры, 3 – пластины.

Схема и основные элементы автоматического выключателя представлены на рисунке 3.

Рис. 3. Устройство автоматического выключателя: 1 – максимальный расцепитель, минимальный расцепитель, независимый расцепитель, 4 – механическая связь с расцепителем, 5- рукоятка ручного включения, 6- электромагнитный привод, 7,8- рычаги механизма свободного расцепления, 9- отключающая пружина, 10- дугогасительная камера, 11- неподвижный контакт, 12- подвижный контакт, 13- защищаемая цепь, 14- гибкая связь, 15- контактный рычагу, 16- тепловой расцепитель, 17- добавочное сопротивление, 18- нагреватель.

Механизм управления предназначен для обеспечения ручного включения и выключения аппарата при помощи кнопок или рукоятки.

Устройство автоматического выключателя

Коммутирующее устройство автоматического выключателя состоит из подвижных и неподвижных контактов (силовых и вспомогательных). Пара контактов (подвижный и неподвижный) образуют полюс автоматического выключателя, количество полюсов бывает от 1 до 4. Каждый полюс комплектуется отдельной дугогасительной камерой.

Механизм, который отключает автоматический выключатель при аварийных режимах, называется расцепителем . Различают следующие виды расцепителей:

– электромагнитный максимального тока (для защиты электроустановок от токов короткого замыкания),

– тепловой (для защиты от перегрузок),

– комбинированный, имеющий электромагнитный и тепловой элементы,

– минимального напряжения (для защиты от недопустимого снижения напряжения),

– независимый (для дистанционного управления автоматическим выключателем),

– специальный (для реализации сложных алгоритмов защиты).

Устройство автоматического выключателя

Электромагнитный расцепитель автоматического выключателя представляет собой небольшую катушку с обмоткой из медного изолированного провода и сердечником. Обмотка включается в цепь последовательно с контактами, то есть по ней проходит ток нагрузки.

В случае возникновения короткого замыкания ток в цепи резко возрастает, в результате создаваемое катушкой магнитное поле вызывает перемещение сердечника (втягивание в катушку или выталкивание из неё). Сердечник при перемещении действует на отключающий механизм, который вызывает размыкание силовых контактов автоматического выключателя. Существуют автоматические выключатели с полупроводниковыми расцепителями, реагирующими на максимальный ток.

Тепловой расцепитель автоматического выкючателя представляет собой биметаллическую пластину, изготовленную из двух металлов с различными коэффициентами линейного расширения, жестко соединенных между собой. Пластина не является сплавом металлов, их соединение производится обычно прессованием. Биметаллическая пластина включается в электрическую цепь последовательно с нагрузкой и нагревается электрическим током.

В результате нагрева происходит изгибание пластины в сторону металла с меньшим коэффициентом линейного расширения. В случае возникновения перегрузки, то есть при небольшом (в несколько раз) увеличении тока в цепи по сравнению с номинальным, биметаллическая пластина, изгибаясь, вызывает отключение автоматического выключателя.

Время срабатывания теплового расцепителя автоматического выключателя зависит не только от величины тока, но и от температуры окружающей среды, поэтому в ряде конструкций предусмотрена температурная компенсация, которая обеспечивает корректировку времени срабатывания в соответствии с температурой воздуха.

Независимый расцепитель минимального напряжения по конструкции аналогичны электромагнитному и отличаются от него условиями срабатывания. В частности, независимый расцепитель обеспечивает отключение автомата при подаче напряжения на расцепитель независимо от наличия аварийных режимов.

Указанные расцепители являются дополнительными и могут отсутствовать в конструкции автоматического выключателя. Имеются также выключатели без каких-либо расцепителей, в этом случае они называются в ыключателями- разъединителями .

В настоящее время распространены автоматические выключатели типов АП50Б, АЕ10, АЕ20, АЕ20М, ВА04-36, ВА-47, ВА-51, ВА-201, ВА88 и др. Автоматические выключатели АП50Б выпускают на номинальные токи до 63А, АЕ20, АЕ20М – до 160А, ВА-47 и ВА-201 – до 100А, ВА04-36 – до 400 А, ВА88 – до 1600А.

Читайте также:  Каре боб на ножке с челкой фото

3.1 Общие требования к схемам управления.

Дистанционное управление коммутационными аппаратами (в основном выключателями) при ведении оперативных переключений в нормальном режиме или при ликвидации аварийных состояний осуществляется вручную оператором или автоматически от устройств релейной защиты. Действие систем управления сопровождается работой устройств сигнализации, которые дают оперативному персоналу необходимую информацию о состоянии оборудования и срабатывании защиты (автоматики). Для предупреждения неправильных действий или работы предусматриваются специальные блокировки.

К системам дистанционного управления выключателями предъявляется ряд требований:

– цепи управления должны допускать отключение выключателя, как со щита управления, так и по месту его установки.

– на щите управления и в распределительном устройстве должна быть предусмотрена сигнализация положения выключателя.

– цепи управления должны иметь контрольные устройства, сигнализирующие об обрыве этих цепей.

– управляющий импульс должен сниматься с исполнительного элемента после выполнения команды, так как обмотки электромагнитов приводов не предназначены для длительного обтекания током

– схема управления должна предусматривать блокировку от «прыгания», исключающую возможность при КЗ многократных включений выключателя при одном командном импульсе.

– схема должна предусматривать возможность не только ручного управления, но и подачи соответствующего импульса от устройств релейной защиты и автоматики.

Команды дистанционного управления подаются вручную, как правило, при помощи ключей управления. Промышленностью выпускаются разные типы ключей управления. Остановимся на серии ключей ПМО (переключатель малогабаритный с самовозвратом рукоятки из оперативных положений «Включено» и «Отключено»), как наиболее широко применяемых в схемах управления приводами выключателей.

Все ключи серии ПМО набираются из стандартных деталей: контактных пакетов, механизма возврата и фиксации, лицевого фланца с рукояткой. Наиболее ответственные детали ключа – контактные пакеты. Пакет состоит из пластмассовых контактодержателей, в которых закрепляются неподвижные контакты и подвижного контактного мостика. В зависимости от формы контактов и порядка их замыкания пакету присваивается определенный номер. Контактные пакеты насаживаются на общий центральный пластмассовый вал квадратного сечения, связанный с рукояткой ключа. Собранные пакеты стягиваются специальными шпильками. В одних пакетах контактный подвижный мостик жестко связан с центральным валом, в других подвижный контакт имеет свободный ход на разные углы (45 0 , 90 0 , 135 0 ). Контакты второго типа могут сохранить одно и то же положение при нескольких положениях рукоятки ключа управления. Подвижные мостики могут насаживаться на вал под разными углами по отношению друг к другу и к рукоятке. Номера пакетов, форма и положение подвижных контактов, характер движения рукоятки ключа подбираются в соответствии со схемой управления.

Ключ ПМОВ имеет три положения рукоятки: «Включить», «Отключить» и среднее – нейтральное (фиксированное) положение. Разновидность ключей ПМО – ключ ПМОФ – имеет несколько (в зависимости от конструкции) фиксированных положений, а ключ ПМОВФ кроме двух положений с возвратом имеет еще четыре фиксированных положения рукоятки.

Наряду с ключами ПМО в электроустановках применяются ключи серий К и МК (малогабаритные). Принцип их устройства и действия аналогичен описанному выше.

3.2 Схема управления с использованием ключа типа ПМОВФ-1336

Исполнительными элементами схем управления выключателей с электромагнитными приводами являются электромагниты включения YAC и отключения YAT. Электромагнит YAC должен развивать большое усилие, так как кроме перемещения контактной системы выключателя с его помощью необходимо взвести отключающие пружины. Поэтому такие электромагниты потребляют большой ток и, их питание осуществляется от источника питания через специальные шинки питания привода EV. Контакты ключа управления не рассчитаны на включение и отключение цепи YAC. Эту операцию выполняет промежуточный пускатель (контактор) КМ, катушка которого питается от шинок управления, через замыкающиеся при подаче команды на включение контакты ключа.

Электромагнит отключения YAT предназначен для освобождения защелки привода, после чего выключатель отключается под действием отключающих пружин. Больших усилий при этом от электромагнита не требуется, он выполняется компактным и потребляет небольшой ток, поэтому YAT питается от шинок управления непосредственно через контакты ключа или реле управления.

Подача ключом ПМОВФ команды на включение выключателя осуществляется в два приема: из положения рукоятки «Отключено» в положение «Предварительно отключено» (предварительная команда) и из положения «Предварительно включено» в положения «Включить» (основная команда). Выполнение команды в два приема снижает вероятность ошибочных действий персонала. После подачи команды и освобождения рукоятки ключа, последняя, под воздействием механизма возврата, переходит в положение «Включить».

При подаче команды «Включить» образуется цепь: +ЕС, контакты ключа 5-8, замкнутые вспомогательные контакты выключателя (на схеме не обозначены), обмотка промежуточного пускателя КМ, шинка управления –ES. По обмотке промежуточного пускателя КМ протекает ток, в результате чего контакты замыкаются и собирают цепь питания электромагнита включения YAC, и выключатель включается. Аналогично происходит включение выключателя от действия устройств автоматики, выходные контакты которых включаются параллельно контактам ключа управления.

Команда на отключение выполняется с помощью ключа так же в два приема: из положения «Включить» в положение «Предварительно отключено» (предварительная команда) и из положения «Предварительно отключено» в положение «Отключить» (основная команда). После команды «Отключить» рукоятка возвращается в положение «Отключено».

Цепь команды на отключение: +EC, контакты ключа 6-7, вспомогательный контакт выключателя (который замкнулся при включении выключателя), обмотка электромагнита отключения YAT, -ES. Сердечник YAT втягивается, при этом, освобождая защелку привода и, выключатель отключается.

При использовании малогабаритных ключей типа МК цепи включения и отключения замыкаются с помощью контактов реле: реле команды «Включить» КСС и реле команды «Отключить» КСТ. Это связано с тем, что контакты ключа МК не рассчитаны на непосредственное переключение цепей управления, как при использовании ключей типов ПМО или К. Применение малогабаритных ключей позволяет уменьшить габариты пультов управления, а небольшие токи в цепи контактов ключа и обмотках реле – использовать соединительный контрольный кабель меньшего сечения.

3.3 Схема управления с использованием ключа типа МКВ.

На рис. 3.3.1 представлена схема управления выключателем с электромагнитным приводом и ключом типа МКВ.

Подача команды на включение выключателя осуществляется поворотом рукоятки ключа в положение «Включено» ( поворот на 45 0 по часовой стрелке). При этом замыкается цепь обмотки реле команды «Включить» КСС: +ЕС, контакты ключа 1-3, обмотка реле КСС, -ES. Реле замыкает свои контакты в цепи промежуточного пускателя КМ и далее работа схемы не отличается от рассмотренной ранее схемы с применением ключа типа ПМОВФ. После подачи команды на включение рукоятка ключа возвращается в нейтральное положение.

Читайте также:  Холодный фарфор что это такое

Команда «Отключено» производится поворотом ключа в соответствующее положение (поворот на 45 0 против часовой стрелки), при этом создается цепь питания обмотки реле команды «Отключить» КСТ. Его контакты замыкают цепь электромагнита отключения YAT, что приводит к отключению выключателя. После подачи команды на отключение рукоятка ключа возвращается в нейтральное положение.

В этой схеме, как и в предыдущей, имеется возможность подать импульс на включение выключателя реле от устройств автоматики и на отключение от устройств релейной защиты.

3.4 Схема управление пневматическим приводом выключателя.

Управление системой подачи воздуха производится при помощи электромагнитных клапанов. Команда на включение некоторых выключателей может быть подана без промежуточного пускателя, непосредственно контактами ключа ПМО, К и другими. При использовании в схемах управления ключей типа МК во всех случаях требуется применять релейную схему управления.

Схемы управления воздушными выключателями разнообразны, что обусловлено различными типами применяемых выключателей, особенностями приводов, а в ряде случаев – специфическими требованиями энергосистемы.

Выключатели с номинальным напряжением 110 кВ и выше изготавливаются в виде однополюсных аппаратов, из которых образуют трехфазные группы. Каждый полюс выключателя имеет отдельную пневматическую систему, которая позволяет при необходимости производить пофазное включение и отключение выключателя. В связи с этим существуют схемы трехфазного и пофазного управления.

На рис. 3.4.1 показана упрощенная схема трехфазного управления воздушным выключателем полюсного исполнения. Каждый полюс управляется своими электромагнитами включения и отключения, YAC и YAT соответственно. Катушки YAC всех фаз соединены параллельно и поэтому получают питание одновременно при подаче команды «Включить», что обеспечивает одновременное включение трех фаз выключателя. Так же соединены и катушки YAT.

Вспомогательные контакты трех фаз выключателя в цепи включения соединяются последовательно, а в цепи отключения параллельно. Последовательное соединение не допускает включения неисправного выключателя (у исправного выключателя вспомогательные контакты отдельных фаз находятся в одинаковом положении). Параллельное соединение вспомогательных контактов в цепи отключения обеспечивает прохождение команды на отключение выключателя даже при отказе вспомогательных контактов одной или двух фаз.

Операции выключателем допускаются только при наличии определенного давления воздуха в резервуаре. Давление контролируется с помощью электроконтактного манометра ЭКМ, который, при снижении давления ниже допустимого, замыкает свой контакт и подает напряжение на обмотку промежуточного реле KL. Реле KL размыкает свой контакт в цепи управления выключателем и запрещает операции с ним.

При подаче ключом управления кратковременного импульса, недостаточного для завершения операции, может произойти повреждение выключателя. Для надежного завершения начатой операции контакты ключа управления шунтируются одним из замыкающих вспомогательных контактов YAC или YAT.

В остальном работа данной схемы строится на тех же принципах, что рассмотренные ранее.

3.5 Блокировки в схемах управления приводами выключателей.

Различают два основных вида блокировок: блокировки безопасности и оперативные.

В схемах управления приводом выключателя есть еще одна, обязательная блокировка: блокировка от многократного включения выключателя на существующее КЗ (блокировка от «прыгания»).

Блокировка от «прыгания» может быть выполнена на механическом принципе или путем использования специальной электрической схемы.

На рис. 3.5.1 изображена схема электрической блокировки от «прыгания» с использованием специального промежуточного реле (тип РП-232, -252) KBS. Реле имеет две обмотки: последовательную KBS1 и параллельную KBS2.

При включении выключателя на КЗ ключом управления или устройством автоматики срабатывает релейная защита данного присоединения, подавая команду на отключение выключателя. Создается положение, когда одновременно существуют две команды: на включение выключателя контактами ключа управления или от устройств автоматического включения и на отключение контактами релейной защиты. Неправильная работа привода выключателя в этом случае блокируется с помощью реле KBS.

После включения выключателя на КЗ и срабатывания релейной защиты создается цепь отключения: +ЕС, контакты релейной защиты, обмотка KBS1, вспомогательные контакты выключателя В, обмотка электромагнита отключения YAT, -ES. Происходит отключение выключателя и одновременное срабатывание реле KBS. Срабатывая, реле, своими нормально замкнутыми контактами, размыкает цепь в команде «Включить» замыкает вторую пару контактов в цепи самоподхвата второй обмоткой реле KBS2, что обеспечивает его подтянутое состояние после отключения выключателя в течении всего времени, пока сохраняется положение ключа «Включено»или будут замкнуты контакты устройств автоматического включения.

После снятия команды на включение (отпускание рукоятки ключа) схема управления возвращается в исходное состояние.

Блокировками безопасности называются устройства, предупреждающие вход лиц эксплуатационного или ремонтного персонала в камеры распределительных устройств или испытательного оборудования, в которых не исключена возможность прикосновения или опасного приближения к токоведущим частям или к частям оборудования, находящимся под напряжением.

Часто, в качестве блокирующих устройств таких камер, применяют электрические замки, которые можно отпереть лишь при снятии напряжения с оборудования.

В камерах КРУ, после выката тележек с оборудованием, доступ к частям оставшимся под напряжением, предотвращается специальными металлическими шторками, закрывающимися автоматически.

Оперативные блокировки представляют собой устройства, препятствующие неправильным действиям персонала при осуществлении переключений в схемах электрических соединений.

Наиболее характерным видом оперативных блокировок являются блокировки от неправильных операций разъединителями и заземляющими ножами.

3.6 Виды сигнализаций в схемах управления приводом выключателя

В общем случае на щитах управления должны предусматриваться следующие виды сигнализации: положения коммутационных аппаратов, аварийная, предупреждающая и командная.

Сигнализация положения коммутационных аппаратов (выключателей, разъединителей и их заземляющих ножей) служит для информации оперативного персонала о состоянии схемы электрических соединений в нормальных и аварийных условиях.

Сигнализация положения выключателей выполняется, как правило, с помощью сигнальных ламп. Лампы располагают непосредственно у ключа управления, либо встраивают в мнемоническую схему щита. Световая сигнализация положения выполняется по-разному, в зависимости от схемы управления выключателем.

Сигнализация аварийного отключения применяется для извещения персонала об отключении выключателя релейной защитой. Выполняется сочетанием светового и звукового сигналов. Назначение звукового сигнала – привлечь внимание персонала к произошедшему отключению, а светового – указать отключившийся аппарат.

Предупреждающая сигнализация извещает персонал о ненормальных режимах работы контролируемого оборудования и частей электроустановки или о ненормальном состоянии вторичных цепей защиты и автоматики.

Читайте также:  Сочетание кирпичиков с обоями

Командная сигнализация предназначена для передачи наиболее важных команд обслуживающему персоналу агрегатных щитов управления в процессе эксплуатации.

Последнее изменение этой страницы: 2016-12-16; Нарушение авторского права страницы

В последнее время вместе с ростом спроса людей усложняется обслуживание различного приборов, как в бытовом плане, так и в производственном. В большинстве случаев различные приборы потребляют электричество, а это означает, что какая-либо авария или сбой в сети может порой вызвать долгий простой работы, отыскивание необходимых запчастей и т.д. Именно из-за этого каждая поломка встает перед потребителями со временем в более значительную сумму. В этом плане существует оптимальный вариант сохранения различных приборов, финансов и времени – специальное устройство, предохраняющее приборы от последствий аварий, главным условием которого станет надежность и долговечность.

Практически все вышеперечисленные свойства идеально сочетает в себе автоматический выключатель. Автомат – это специальный коммутационный прибор, главным свойством которого является проведение и переключение тока в ординарном положении электросети. Во время форс-мажорных обстоятельствах этот прибор обесточивает клиентов через некоторые время или при увеличении тока до критической точки (короткого замыкания). Автоматические выключатели считаются специальной разработкой для защиты приборов от перегрузок, скачков напряжения, которые могут вызвать выход различных приборов из строя. Время от времени с помощью такого прибора следует делать перезагрузку подачи питающего напряжения.
Конструкция такого прибора отличается простотой, так как автоматический выключатель предполагает наличие корпуса из диэлектрика, рычаг, пару контактов, а также расцепители.

Составляющие магнитного расцепителя сделаны в виде соленоида – при помощи сердечника они размыкают цепь при повышении максимально дозволенной величины тока. Для более оперативной сработки ему нужен ток, которые превышает номинальное значение в два или десять раз. Тепловой расцепитель включается в том случае, если влияние повышенного тока довольно-таки долгое, но возрастание тока в таком случае может доходить только до полутора раз больше номинала. В этот период обычно нагревается биметаллическая пластинка, которая под воздействием температуры становится длиннее и таким способом размыкает цепь. С течением времени пластина остывает, и автоматический выключатель снова становится готовым к использованию.

Автоматические выключатели можно разделить на несколько групп по следующим особенностям:

1. По типу тока. Значение тока в основном колеблется в больших пределах – от 6,3 ампер до 6,3 килоампер;
2. По объёму полюсов – обычно от 1 до 4 полюсов;
3. По наличию/отсутствию токоограничения;
4. По видам расцепителей;
5. По типу переключения цепей;
6. По типу герметичности корпуса, благодаря которому достигается защита от негативного воздействия окружающей среды и многим другим особенностям.
7.

Также автоматы классифицируются и по быстроте срабатывания:

Нормальные. Время сработки обычно составляет до 0,1 секунды;
Селективные. Срабатывание занимает примерно 1 секунду;
Быстродействующие. Помимо наиболее быстрого отключения (примерно 0,005 секунды), такие выключатели обладают токоограничивающим эффектом.

Если вы собрались приобрести автоматический выключатель, то кроме номинального тока, вам нужно будет учесть его особенности (ток мгновенного расцепления).
Насчитывают 3 вида характеристик – В, С и D:

В – ток мгновенного расцепления от 3 до 5 *In включительно (в данном случае In означает номинальный ток);
С – от пяти до десяти *In
D – от десяти и до пятидесяти *In.

Обозначение автоматических выключателей серии ВА

ВА – Х1Х2Х3Х4 – Х5Х6 Х7Х8Х9Х10 – Х11Х12 Х13Х14ВА

Х1, Х2 – номер серии

Х3, Х4 – максимальный номинальный ток
25 – 50 А 29 – 63 А; 31 – 100 А; 35 – 250 А; 37 – 400 А; 39 – 630 А; 41 – 1000 А; 43 – 2000 А

Х5 – число полюсов и количество расцепителей тока
3 – 3 полюса с максимальным расцепителем тока в каждом полюсе;
6 – выключатели постоянного тока;
8 – 3 полюса с максимальным расцепителем тока в каждом из двух полюсов

Х6 – исполнение максимальных расцепителей тока в зоне защиты
0 – отсутствуют;
2 – расцепитель в зоне токов короткого замыкания;
3 – расцепитель в зоне токов короткого замыкания;
4 – расцепитель в зоне токов короткого замыкания и перегрузки;

Х7, Х8 – исполнение по дополнительным сборочным единицам

Х9 – вид привода и способ установки выключателя
1 – ручной привод, стационарное исполнение;
3 – электромагнитный привод, стационарное исполнение;
5 – ручной дистанционный привод, выдвижное исполнение;
7 – электромагнитный привод, выдвижное исполнение

Х10 – исполнение по дополнительным механизмам
0 – дополнительные механизмы отсутствуют;
5 – ручной дистанционный привод для оперирования через дверь предустройства;
0 – без регулировки номинального тока тепловых расцепителей и температурной компенсации;
6 – устройство для блокировки положения "Отключено" выключателя стационарного исполнения

Х11, Х12 – степень защиты (00 – IP00; 20 – IP20)

Схема автоматического выключателя

Рычаг выключателя (1) — служит для ручного включения или выключения. Клеммы расположенные в нижней и верхней части автоматического выключателя (2) служат для подключения кабеля. На задней части «автомата» расположена защелка (9) для установки автомата на DIN-рейку. Такими защелками оснащено большинство автоматических выключателей на небольшие токи (до 125 А). Коммутацию цепи выполняют два контакта – подвижный (3) и неподвижный (4). Подвижный контакт для быстрого расцепления оснащен пружиной.

Все автоматические выключатели оснащены двумя типами расцепителей: тепловым и магнитным.

Магнитный расцепитель (он же мгновенный расцепить) представлен соленоидом (7), подвижный сердечник которого способен приводить в движение механизм расцепителя. Когда через соленоид протекает электрический ток выше номинального, электромагнитный поток, действуя на сердечник выталкивает его. Последний, в свою очередь, действует на подвижный контакт и размыкает цепь протеканиятока.

Тепловой расцепитель представлен биметаллической пластиной (5), через которую протекает электрический ток, за счет которого она нагревается. Если через пластинку протекает ток выше номинального, она начинает изгибаться, чем приводит в действие механизм расцепителя. Ток срабатывания теплового расцепителя настраивается в процессе производства регулировочным винтом (6). После остывания, пластина приходит в исходное положение и автоматический выключатель снова готов к использованию.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *