Правило правой руки для эдс индукции

Явление электромагнитной индукции наблюдается и в тех случаях, когда магнитное поле не изменяется во вре­мени, но магнитный поток через контур изменяется из-за движения проводника в магнитном поле. В этом слу­чае причиной возникновения ЭДС индукции является не вихревое электрическое поле, а сила Лоренца.

Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках, в результате заряды начинают двигаться, направленно созда­вая в таком проводнике индукционный ток и эдс индукции.

Направление индукционного тока в движущемся проводнике определяют по правилу пра­вой руки

Правило правой руки: Если правую руку расположить так, чтобы линии магнитной ин­дукции (В) входили в ладонь, а отогнутый большой палец показывал направление движе­ния проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

25.Гармонические колебания, их уравнение и характеристики.

Движения, которые повторяются через равные интервалы времени, называются колебаниями. Колебания, которые происходят по закону синуса или косинуса, называются гармоническими.
Уравнение гармонических колебаний имеет вид: X = Xmsin (ωt + φ0)
где хт — амплитуда колебаний (наибольшее расстояние, на которое тело удаляется от положения равновесия),

ω — циклическая частота колебаний (число колебаний, совершаемых за 2Π секунд),

φ0— начальная фаза колебаний.
Частота колебаний v — число колебаний за секунду. Если за время t совершено N колебаний, то ν=N/t
Единица измерения частоты — Герц (Гц). Частота связана с циклической частотой соотношением: ω=2Πν
Время, за которое происходит одно полное колебание, называется периодом колебаний Т. Период определяется по формуле T=t/N
Сравнивая формулы для расчета частоты и периода, можно заметить, что это обратные величины: T=1/v
Величина, стоящая под знаком синуса или косинуса в уравнении гармонических колебаний, называется фазой колебаний: φ=ωt+φ0
Фаза является той величиной, которая при заданной амплитуде определяет координату.
Графиком гармонических колебаний является синусоида.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8544 – | 7399 – или читать все.

Электромагнитная индукцияэто явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую – и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока, кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.

Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

Читайте также:  Как сделать скворечник чертеж и размеры

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

Правило правой руки
Расположите правую руку так, чтобы силовые линии магнитного поля входили в ладонь, а большой палец, отогнутый на 90 градусов показывал направление движения проводника относительно магнитного поля. Тогда ладонь (4 остальные пальца) покажут направление ЭДС.

Правило левой руки
Нужно расположить левую руку так, чтобы силовые линии магнитного поля входили в ладонь, четыре вытянутых пальца показывали направление тока, тогда большой палец, отогнутый на 90градусов в плоскости ладони, покажет направление действия электромагнитной силы.

6-7 простая волновая обмотка

Простая волновая обмотка. При простой волновой обмотке секции, лежащие под разными полюсами, соединяют последовательно (рис. 94). При этом после одного обхода окружности якоря, т. е. после последовательного соединения р секций приходят к коллекторной пластине, расположенной рядом с исходной. Например, начало секции 1 присоединяют к коллекторной пластине КП1, а ее конец соединяют с коллекторной пластиной КП10 и началом секции 2, которая расположена под следующей парой полюсов; затем конец секции 2 соединяют с другой коллекторной пластиной и с началом

Рис. 92. Принцип выполнения обмотки барабанного якоря

Рис. 93. Схемы одновитковой (а) и многовитковой (б) секций: 1 — активные проводники; 2 — лобовая часть; 3 — активная сторона; 4 — коллекторные пластины

Рис. 94. Общий вид волновой обмотки (а) и схема соединения ее секций (б)

следующей секции. После завершения полного обхода окружности якоря конец соответствующей секции соединяют с коллекторной пластиной КП2 и началом секции 3, затем таким же образом с коллекторной пластиной КП11 и секцией 4 и т. д. до тех пор, пока обмотка не замкнется, т. е. пока не придут к началу секции 1. Якорная катушка в волновой обмотке имеет форму волны (рис. 95, а), откуда получила это название.

Для выполнения обмотки необходимо знать ее результирующий шаг у (см. рис. 94, б), первый у1 и второй у2 частичные шаги, а также шаг по коллектору ук. Указанные шаги обычно выражают в числе пройденных секций (шаг по коллектору выражается в этих же единицах, так как число коллекторных пластин равно числу секций).

В простой волновой обмотке число параллельных ветвей обмотки 2а всегда равно двум и не зависит от числа полюсов:

Читайте также:  Новейшие поделки из конфет

2a = 2 (56)

На рис. 96, а приведена в качестве примера развернутая в плоскость схема простой волновой обмотки якоря четырехполюсной машины, имеющей 19 секций, а на рис. 96, б — эквивалентная схема этой обмотки, показывающая последовательность соединения ее секций и образующиеся параллельные ветви. Цифрами 1, 2, 3 и т. д. обозначены активные проводники, лежащие в верхнем слое каждого паза, а 1′, 2′, 3′ и т. д.— в нижнем слое. При волновой обмотке в машине можно устанавливать только два щеточных пальца. Однако это делают лишь в машинах малой мощности; в более мощных машинах обычно ставят полный комплект (2р) щеточных пальцев для уменьшения плотности тока под щетками и улучшения токосъема.

Простая петлевая обмотка. При простой петлевой обмотке каждую секцию присоединяют к соседним коллекторным пластинам (рис. 97). Например, начало 1-й секции присоединяют к коллекторной пластине КП1, а конец ее соединяют с соседней коллекторной пластиной КП2 и началом рядом лежащей 2-й секции. Далее

Рис. 95. Форма якорных катушек при волновой (а) и петлевой (б) обмотках: 1, 4 — пазовые части (верхняя и нижняя стороны); 2, 5 — задняя и передняя лобовые части; 3 — задняя головка; 6 — концы секций, припаиваемые к коллектору

Рис. 96. Схемы простой волновой обмотки четырехполюсной машины

конец 2-й секции присоединяют к следующей коллекторной пластине и к началу соседней секции и т. д. до тех пор, пока обмотка не замкнется, т. е. пока не придут к началу 1-й секции. В этой обмотке каждая последующая секция расположена рядом с предыдущей, а якорная катушка имеет форму петли (рис. 95,б), откуда получила название обмотка.

В простой петлевой обмотке секции, расположенные под каждой парой полюсов, образуют две параллельные ветви, поэтому число параллельных ветвей по всей обмотке 2а равно числу полюсов 2р:

2a = 2p (56′)

Рис. 97. Общий вид петлевой обмотки (а) и схема соединения ее секций (б)

Условие 2а=2р выражает основное свойство простой петлевой обмотки: чем больше число полюсов, тем больше параллельных ветвей имеет обмотка, следовательно, тем больше щеточных пальцев должно быть в машине. На рис. 98, а приведена в качестве примера развернутая в плоскость схема простой петлевой обмотки якоря че-тырехполюсной машины, имеющей 24 секции, а на рис. 98, б — эквивалентная схема этой обмотки, показывающая последовательность соединения ее секций и образующиеся параллельные ветви (обозначение проводников и коллекторных пластин такое же, как и на рис. 96).

Применение петлевой и волновой обмоток.Каждая из обмоток — петлевая и волновая — имеет свои преимущества. При одном и том же числе проводников в обмотке якоря и числе полюсов простая петлевая обмотка будет иметь в р раз больше параллельных ветвей, чем волновая. Следовательно, она может пропускать значительно больший ток Iя = 2aiя, чем волновая обмотка (здесь Iя — ток в параллельной ветви) (рис. 99). Число же витков в каждой параллельной ветви при петлевой обмотке в р раз меньше, чем при волновой. Так как напряжение машины определяется числом последовательно включенных витков в каждой параллельной ветви, то в машине с петлевой обмоткой напряжение будет в р раз меньше, чем с волновой обмоткой.

Читайте также:  Где найти свой ip адрес в компьютере

Из сказанного следует, что в машинах, рассчитанных для работы при высоких напряжениях, целесообразно применять волновую обмотку. Такая обмотка имеется у большей части вспомогательных машин электровозов и электропоездов, которые рассчитаны для работы при напряжении 1500—3000 В, и у некоторых тяговых двигателей электропоездов. В машинах, рассчитанных для работы при больших токах, целесообразно применять петлевую обмотку. Такую обмотку имеет тяговые двигатели электровозов и тепловозов, а также электровозные генераторы возбуждения, используемые при рекуперации. Машины постоянного тока небольшой мощности обычно выполняют двухполюсными. При двух полюсах петлевая и волновая обмотки не различаются.

При движении проводника в магнитном поле в нем создается направленное движение электронов, то есть электрический ток, что обусловлено явлением электромагнитной индукции.

Для определения на­правления движения элек­тронов воспользуемся из­вестным нам правилом ле­вой руки.

Если, например, про­водник, расположенный перпендикулярно чертежу (рисунок 1), перемещается вместе с содержащимися в нем электронами сверху вниз, то это перемещение электронов будет эквивалентно элек­трическому току, направленному снизу вверх. Если при этом магнитное поле, в котором движется проводник, направлено слева направо, то для определения направления силы, дей­ствующей на электроны, мы должны будем поставить левую руку ладонью влево, чтобы магнитные силовые линии входили в ладонь, а четырьмя пальцами вверх (против направления движения проводника, т. е. по направлению «тока»); тогда на­правление большого пальца покажет нам, что на электроны, находящиеся в проводнике, будет действовать сила, направ­ленная от нас к чертежу. Следовательно, перемещение элек­тронов будет происходить вдоль проводника, т. е. от нас к чертежу, а индукционный ток в проводнике будет направлен от чертежа к нам.

Рисунок 1. Механизм электромагнитной индукции. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Однако, правило левой руки, примененное нами лишь для объяснения явления электромагнитной индукции, оказывается неудобным на практике. Практически направление индукцион­ного тока определяется по правилу правой руки (рисунок 2).

Рисунок 2. Правило правой руки. Правая рука повернута ладонью навстречу магнит­ным силовым линиям, большой палец направлен в сторону движения проводника, а четыре пальца по­казывают, в каком направлении будет течь индук­ционный ток.

Правило правой руки состоит в том, что, если по­местить правую руку в магнитное поле так, чтобы магнитные силовые линии входили в ладонь, а большой палец указывал направле­ние движения проводника, то остальные четыре пальца покажут направление ин­дукционного тока, возникающего в провод­нике.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *