Параллельное соединение полевых транзисторов

С ростом мощности силового оборудования повышаются требования к электронике управления высоковольтной и сильноточной нагрузкой. В мощных импульсных преобразователях, где элементы работают одновременно с высокими уровнями напряжений и токов, зачастую требуется параллельное соединение силовых ключей, таких, например, как IGBT транзисторы, хорошо работающие в подобных схемах.

Существует множество нюансов, которые необходимо учитывать при параллельном включении двух и более IGBT. Один из них – соединение затворов транзисторов. Затворы параллельных IGBT могут подключаться к драйверу через общий резистор, отдельные резисторы или комбинацию общего и отдельных сопротивлений (Рисунок 1). Большинство специалистов сходится во мнении, что обязательно нужно использовать отдельные резисторы. Однако существуют веские доводы в пользу схемы с общим резистором.


а) Индивидуальные резисторы
б) Общий резистор
в) Комбинированное включение резисторов
Рисунок 1. Различные конфигурации схем управления затворами IGBT.

В первую очередь при расчете схемы с параллельными IGBT нужно определить максимальный ток управления транзисторами. Если выбранный драйвер не может обеспечить суммарный базовый ток нескольких IGBT, придется ставить отдельный драйвер на каждый транзистор. В этом случае индивидуальный резистор будет у каждого IGBT. Быстродействия большинства драйверов достаточно, чтобы обеспечить интервал между импульсами включения и выключения в несколько десятков наносекунд. Это время вполне соразмерно с временем переключения IGBT, составляющим сотни наносекунд.

При использовании одного драйвера предметом обсуждения может быть конфигурация резисторов в цепях затворов. Недостатком схемы с отдельными резисторами (Рисунок 1а) является возможность увеличения разброса времени переключения вследствие того, что управляющие напряжения затворов не будут отслеживать выходные сигналы драйвера. Даже если импульсы управления, подающиеся на резисторы с драйвера, будут абсолютно идентичны, различия в зарядах затворов в совокупности с сопротивлениями затворов и импеденсами проводников печатной платы приведут к несовпадению времен нарастания, спада и задержки сигналов на затворах IGBT. Тем не менее, многие выступают в защиту индивидуальных резисторов, поскольку последние минимизируют вероятность возникновения паразитной генерации между IGBT.

Причиной генерации может стать паразитная индуктивность платы (обычно в цепи эмиттера) в сочетании с емкостью затвора и усилением транзисторов. Минимизация индуктивности в цепи эмиттера играет важную роль в предотвращении паразитной генерации.

Общий резистор (Рисунок 1б) гарантирует, что потенциалы затворов обоих IGBT в любой момент времени будет практически одинаковыми, имея лишь незначительный разброс, обусловленный вариациями паразитных импедансов платы. При переходных процессах это может уменьшить различие в уровнях потерь и способствовать более равномерному распределению тока между транзисторами. С точки зрения режима по постоянному току не имеет значения, используются ли отдельные резисторы или один общий, поскольку, в конечном счете, затворы всех IGBT заряжаются до напряжения смещения. Аргументы в пользу общего резистора можно найти и в других источниках, но приводимые там рекомендации нельзя использовать как общие указания в случае с отдельными резисторами в цепях затворов.

Для тестирования различных конфигураций резисторов из 22 выпускаемых ON Semiconductor IGBT типа NGTB40N60IHL были выбраны два транзистора с наибольшим взаимным разбросом параметров. Их потери при включении составляли 1.65 мДж и 1.85 мДж, а потери при выключении 0.366 мДж и 0.390 мДж, соответственно. Транзисторы рассчитаны на рабочее напряжение 600 В и ток 40 А.

Читайте также:  Гибкая подводка для газа леруа мерлен

При использовании одного общего драйвера с отдельными 22-омными резисторами, наблюдалось ярко выраженное несовпадение кривых тока в момент выключения из-за несоответствия скоростей переключения, неравенства порогов, крутизны и зарядов затворов двух приборов. Замена двух резисторов одним общим с сопротивлением 11 Ом в любой момент времени уравнивает потенциалы на затворах обоих IGBT. В такой конфигурации существенно уменьшается перекос токов в момент выключения. С точки зрения рассогласования по постоянному току конфигурация резисторов значения не имеет.

Поскольку до разработки и сборки реального прототипа определить, возникнет ли между приборами паразитная генерация, невозможно, рекомендуется использовать комбинированную схему включения резисторов в цепях затворов (Рисунок 1в).

Комбинированная схема обеспечивает гибкость подбора сопротивлений резисторов, основанную на учете паразитных импедансов реальной схемы. Если в схеме с общим резистором наблюдается генерация, активную часть полного сопротивления цепи затвора можно разделить на отдельный и общий компонент. Для получения оптимальных характеристик сопротивления индивидуальных резисторов должны, насколько возможно, превышать значение сопротивления затвора, но оставаться в пределах, при которых исключается риск возникновения генерации. Эта схема легко может быть приведена в соответствие с конкретными условиями эксплуатации и использоваться в качестве самостоятельного функционального блока. Таким способом можно обеспечить максимальную близость потенциалов на затворах IGBT в моменты переключения, но с учетом опасности возникновения генерации лучше добавить небольшие индивидуальные сопротивления.

Оптимизация параметров мощных схем с параллельным включением силовых ключей позволяет повысить надежность устройства и улучшить его рабочие характеристики. Рассмотренные в статье схемы управления затворами IGBT – один из факторов повышения эффективности мощных коммутационных узлов преобразовательной техники.

Перевод: Антон Юрьев по заказу РадиоЛоцман

Подобно тому, как в различных электронных устройствах биполярные транзисторы работают с включением по схеме с общим эмиттером, с общим коллектором или с общей базой, полевые транзисторы во многих случаях можно использовать аналогичным образом включая их: с общим истоком, с общим стоком или с общим затвором.

Разница заключается в способе управления: биполярный транзистор управляется током базы, а полевой транзистор — зарядом затвора.

С точки зрения затрат энергии на управление, управление полевым транзистором получается в целом более экономичным, чем управление транзистором биполярным. Это один из факторов, объясняющих нынешнюю популярность полевых транзисторов. Рассмотрим, однако, в общих чертах типичные схемы включения полевых транзисторов.

Включение с общим истоком

Схема включения полевого транзистора с общим истоком является аналогом схемы с общим эмиттером для биполярного транзистора. Такое включение весьма распространено в силу возможности давать значительное усиление по мощности и по току, фаза напряжения цепи стока при этом переворачивается.

Читайте также:  В каких случаях назначается наблюдающий в электроустановках

Входное сопротивление непосредственно перехода затвор-исток достигает сотен мегаом, хотя оно может быть уменьшено путем добавления резистора между затвором и истоком с целью гальванически подтянуть затвор к общему проводу (защита полевого транзистора от наводок).

Величина этого резистора Rз (от 1 до 3 МОм обычно) подбирается так, чтобы не сильно шунтировать сопротивление затвор-исток, при этом не допускать перенапряжения от тока обратносмещенного управляющего перехода.

Существенное входное сопротивление полевого транзистора в схеме с общим истоком является важным достоинством именно полевого транзистора, при его использовании в схемах усиления напряжения, тока и мощности, ведь сопротивление в цепи стока Rс не превышает обычно единиц кОм.

Включение с общим стоком

Схема включения полевого транзистора с общим стоком (истоковый повторитель) является аналогом схемы с общим коллектором для биполярного транзистора (эмиттерный повторитель). Такое включение используется в согласующих каскадах, где выходное напряжение должно находиться в фазе с входным.

Входное сопротивление перехода затвор-исток как и прежде достигает сотен мегаом, при этом выходное сопротивление Rи сравнительно небольшое. Данное включение отличается более высоким частотным диапазоном, чем схема с общим истоком. Коэффициент усиления по напряжению близок к единице, так как напряжение исток-сток и затвор-исток для данной схемы обычно близки по величине.

Включение с общим затвором

Схема с общим затвором — подобие каскаду с общей базой для биполярного транзистора. Усиления по току здесь нет, потому и усиление по мощности многократно меньше, чем в каскаде с общим истоком. Напряжение при усилении имеет ту же фазу, что и управляющее напряжение.

Поскольку выходной ток равен входному, то и коэффициент усиления по току равен единице, а коэффициент усиления по напряжению, как правило, больше единицы.

В данном включении присутствует особенность – параллельная отрицательная обратная связь по току, ибо при повышении управляющего входного напряжения, потенциал истока возрастает, соответственно ток стока уменьшается, и снижает напряжение на сопротивлении в цепи истока Rи.

Так с одной стороны напряжение на сопротивлении истока увеличивается благодаря росту входного сигнала, но уменьшается снижением тока стока, это и есть отрицательная обратная связь.

Данный феномен делает шире полосу пропускания каскада в области высоких частот, поэтому схема с общим затвором популярна в усилителях напряжения высоких частот, и особенно востребована в высоко устойчивых резонансных схемах.

Подобно тому, как в различных электронных устройствах биполярные транзисторы работают с включением по схеме с общим эмиттером, с общим коллектором или с общей базой, полевые транзисторы во многих случаях можно использовать аналогичным образом включая их: с общим истоком, с общим стоком или с общим затвором.

Разница заключается в способе управления: биполярный транзистор управляется током базы, а полевой транзистор — зарядом затвора.

С точки зрения затрат энергии на управление, управление полевым транзистором получается в целом более экономичным, чем управление транзистором биполярным. Это один из факторов, объясняющих нынешнюю популярность полевых транзисторов. Рассмотрим, однако, в общих чертах типичные схемы включения полевых транзисторов.

Читайте также:  Обзор часов casio protrek

Включение с общим истоком

Схема включения полевого транзистора с общим истоком является аналогом схемы с общим эмиттером для биполярного транзистора. Такое включение весьма распространено в силу возможности давать значительное усиление по мощности и по току, фаза напряжения цепи стока при этом переворачивается.

Входное сопротивление непосредственно перехода затвор-исток достигает сотен мегаом, хотя оно может быть уменьшено путем добавления резистора между затвором и истоком с целью гальванически подтянуть затвор к общему проводу (защита полевого транзистора от наводок).

Величина этого резистора Rз (от 1 до 3 МОм обычно) подбирается так, чтобы не сильно шунтировать сопротивление затвор-исток, при этом не допускать перенапряжения от тока обратносмещенного управляющего перехода.

Существенное входное сопротивление полевого транзистора в схеме с общим истоком является важным достоинством именно полевого транзистора, при его использовании в схемах усиления напряжения, тока и мощности, ведь сопротивление в цепи стока Rс не превышает обычно единиц кОм.

Включение с общим стоком

Схема включения полевого транзистора с общим стоком (истоковый повторитель) является аналогом схемы с общим коллектором для биполярного транзистора (эмиттерный повторитель). Такое включение используется в согласующих каскадах, где выходное напряжение должно находиться в фазе с входным.

Входное сопротивление перехода затвор-исток как и прежде достигает сотен мегаом, при этом выходное сопротивление Rи сравнительно небольшое. Данное включение отличается более высоким частотным диапазоном, чем схема с общим истоком. Коэффициент усиления по напряжению близок к единице, так как напряжение исток-сток и затвор-исток для данной схемы обычно близки по величине.

Включение с общим затвором

Схема с общим затвором — подобие каскаду с общей базой для биполярного транзистора. Усиления по току здесь нет, потому и усиление по мощности многократно меньше, чем в каскаде с общим истоком. Напряжение при усилении имеет ту же фазу, что и управляющее напряжение.

Поскольку выходной ток равен входному, то и коэффициент усиления по току равен единице, а коэффициент усиления по напряжению, как правило, больше единицы.

В данном включении присутствует особенность – параллельная отрицательная обратная связь по току, ибо при повышении управляющего входного напряжения, потенциал истока возрастает, соответственно ток стока уменьшается, и снижает напряжение на сопротивлении в цепи истока Rи.

Так с одной стороны напряжение на сопротивлении истока увеличивается благодаря росту входного сигнала, но уменьшается снижением тока стока, это и есть отрицательная обратная связь.

Данный феномен делает шире полосу пропускания каскада в области высоких частот, поэтому схема с общим затвором популярна в усилителях напряжения высоких частот, и особенно востребована в высоко устойчивых резонансных схемах.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *