Косвенный метод измерения мощности

Косвенное измерение – мощность

Косвенное измерение мощности при помощи амперметра и вольтметра связано с неудобством отсчета показаний двух приборов, что устраняется при применении ваттметра. На рис. 8 – 2 показаны две схемы включения ваттметра, из которых видно, что при схеме рис. 8 – 2, а на параллельную обмотку прибора подано напряжение больше напряжения U на величину падения напряжения в последовательной обмотке ваттметра и, следовательно, показание ваттметра будет больше мощности нагрузки из-за потери энергии в его собственной последовательной обмотке. [2]

Косвенное измерение мощности возможно путем последовательного измерения тока / напряжения / частоты / активной мощности. [4]

Способ уравновешенного моста обеспечивает косвенное измерение мощности . Преимуществом этого способа является то, что во время измерения сопротивление термистора не изменяется, согласование не нарушается и погрешность измерения зависит BS основном только от точности градуировки шкалы миллиамперметра в цепи питания моста и чувствительности микроамперметра – индикатора баланса моста. При этом в качестве индикатора равновесия используют усилитель с электронным: вольтметром на его выходе. [5]

Мощность в цепях постоянного тока можно определить, одновременно измеряя ток и напряжение и перемножая их значения. Такое косвенное измерение мощности связано с неудобством отсчета показаний двух приборов. Это неудобство устраняется при использовании прямопоказывающих ваттметров. В цепях постоянного тока обычно применяются электродинамические ваттметры. [6]

Мощность в цепях постоянного тока можно определить, одновременно измеряя ток и напряжение и умножая их значения. Такое косвенное измерение мощности связано с неудобством отсчета показаний двух приборов. Это неудобство устраняется применением прямопоказывающих ваттметров. В цепях постоянного тока обычно применяются электродинамические ваттметры. [8]

Мощность в цепях постоянного тока можно определить, одновременно измеряя напряжение и ток и перемножая измеренные значения. Такое косвенное измерение мощности с помощью амперметра и вольтметра связано с неудобством отсчета показаний двух приборов. Это неудобство устраняется при применении ваттметров. В цепях постоянного тока обычно применяются ваттметры электродинамической системы, которые выполняются одно – и многопредельными. Выбор необходимых пределов по току и напряжению производится с помощью шунтов и добавочных сопротивлений. [9]

Находят применение также косвенные методы измерения мощности постоянного и однофазного переменного тока. При косвенном измерении мощности необходимо производить одновременный отсчет по двум или трем приборам. Кроме того, при этом снижается точность измерения за счет суммирования инструментальных погрешностей приборов. [10]

На высоких частотах в качестве перемножителей используются различные электронные устройства. Широко используются косвенные измерения мощности по прямым измерениям напряжения или тока на активной нагрузке. [11]

Направление поворота указателя ваттметра зависит от взаимного направления токов в его неподвижной и подвижной катушках. Поэтому для правильного включения ваттметра в измеряемую цепь один зажим его токовой катушки ( последовательная цепь) и один зажим катушки напряжения ( параллельная цепь) отмечены звездочкой. Эти зажимы называют генераторными потому, что при соединении их друг с другом и с одним из полюсов генератора указатель ваттметра будет отклоняться в нужном направлении. Показанные на рис. 7.4 схемы правильного включения катушек ваттметра полностью идентичны схемам, приведенным на рис. 7.3, для косвенного измерения мощности , поэтому данные выше выражения для определения погрешностей справедливы и в этом случае. Погрешности следует учитывать только при измерениях в маломощных цепях. [12]

Направление поворота указателя ваттметра зависит от взаимного направления токов в его неподвижной и подвижной катушках. Поэтому для правильного включения ваттметра в измеряемую цепь один зажим его токовой катушки ( последовательная цепь) и один зажим катушки напряжения ( параллельная цепь) отмечены звездочкой. Эти зажимы называют генераторными потому, что при соединении их друг с другом и с одним из полюсов генератора указатель ваттметра будет отклоняться в нужном направлении. Показанные на рис. 4.4 схемы правильного включения катушек ваттметра полностью идентичны схемам, приведенным на рис. 4.3, для косвенного измерения мощности , поэтому данные выше выражения для определения погрешностей справедливы и в этом случае. Погрешности следует учитывать только при измерениях в маломощных цепях. [13]

Измерения напряжений (токов).

Для измерения тока и напряжения применяют методы непосредственной оценки и сравнения. В лабораторном практикуме по электротехнике используется в основном метод непосредственной оценки.

Для измерения тока амперметр включают последовательно с нагрузкой R1 (в разрыв ветви) (рис. 8.1).

Читайте также:  Сколько стоит выкопать пруд на участке

В связи с тем, что сопротивление амперметра RА отлично от нуля, возникает методическая погрешность измерения, обусловленная включением амперметра:

Обычно RА I ‘ . В результате возрастает падение напряжения на внутреннем сопротивлении источника Ri и соответственно уменьшаются падение напряжения на резисторе R и показания вольтметра UV.

Абсолютная методическая погрешность измерения, возникающая за счет шунтирования резистора R сопротивлением RV , равна

.

Относительная методическая погрешность определяется по формуле

.

Очевидно, что абсолютная и относительная методические погрешности измерения будут стремиться к нулю, если → 0. Поскольку значения Ri и R являются параметрами цепи и остаются неизменными, для уменьшения погрешности входное сопротивление вольтметра должно быть как можно больше (в идеале → ∞). Как указывалось ранее, большим входным сопротивлением обладают электронные вольтметры. Однако и их входное сопротивление Rвх имеет конечное значение, величина которого зависит от предела измерения. Поэтому некоторая малая погрешность δV всегда имеет место.

Исходя из заданной методической погрешности δV , можноопределить требуемое значение входного сопротивления вольтметра Rвх из выражения:

.

При измерении напряжения переменного тока эквивалентная схема входного сопротивления вольтметра имеет вид, показанный на рис. 8.3.

Рисунок 8.3–Электрическая схема для измерения переменного напряжения

Комплексное входное сопротивление вольтметра:

.

Модуль входного напряжения:

.

Из приведенных выражений следует, что с увеличением частоты входное сопротивление вольтметра уменьшается из-за снижения емкостного сопротивления. В результате возникает дополнительная методическая частотная погрешность вольтметра. В описании прибора указывается значение Rвхи значение Cвх вольтметра для различных пределов измерения. Обычно Rвх =10 5 …10 8 Ом, Cвх = 30…70 пФ.

Погрешность измерения за счет шунтирующего действия входной цепи вольтметра можно определить, если измеряемую цепь представить схемой (рис. 8.4), состоящей из эквивалентного генератора с ЭДС холостого хода UX, соответствующего измеряемому напряжению и с внутренним сопротивлением Rэкв, соответствующим эквивалентному сопротивлению в точках подключения вольтметра.

Рисунок 8.4–Расчетная схема

Относительную погрешность измерения (в %)можно определить по формуле

На практике при измерениях на частотах меньше 20 кГц частотной погрешностью вольтметра можно пренебречь.

Основная приведенная погрешность зависит от значения измеряе­мо­го напряжения. Так, при измерении малых (в пределах 100…300 мВ) напряжений она может достигать 10…15 %, а при измерении больших уровней напряжения – уменьшается в 3–4 раза.

На погрешность измерения (на частотах выше 0,1…0,3 МГц) оказывают влияние индуктивность и активное сопротивление соединительных проводов. Поэтому их длины должны быть по возможности меньшими (до 0,5 м).

При измерении напряжений следует обратить особое внимание на выбор предела измерений (так же, как и при измерении тока).

У электронных вольтметров имеется два входных зажима, к которым подключается измеряемое напряжение U. Один зажим обычно соединен с корпусом прибора, поэтому его называют корпусным и обозначают . Другой зажим является потенциальным.

Для уменьшения погрешности измерения и влияния помех корпусный зажим вольтметра соединяется с корпусным зажимом генераторов и других приборов (используемых в эксперименте) или присоединяется к точкам цепи, потенциал которых ближе к нулевому. При этом следует избегать касания корпусов приборов.

Таким образом, при измерении напряжений нужно брать приборы с большим внутренним сопротивлением и выбирать пределы измерения так, чтобы при измерении стрелка прибора отклонялась на возможно больший угол.

Измерение мощности. Измерение мощности в цепях постоянного тока, активной и реактивной мощностей в цепях переменного тока (однофазных и трехфазных) промышленной частоты производится обычно электродинамическими и ферродинамическими ваттметрами.

Схема подключения ваттметра PW для измерения в цепях постоянного тока или в однофазной цепи переменного тока приведена на рис. 8.5.

Рисунок 8.5–Электрическая схема для измерения мощности

Такая схема включения обеспечивает минимальную погрешность измерения, когда сопротивление нагрузки намного больше сопротивления токовой катушки ваттметра, что в большинстве случаев имеет место. При этом неподвижная (токовая) катушка ваттметра включается в разрыв цепи, а подвижная катушка (напряжения) подключается параллельно нагрузке.

Начала катушек (генераторные зажимы) обозначаются звездочкой (*) или знаком (+). Эти зажимы должны быть подключены к положительному полюсу источника питания.

В цепях постоянного тока потребляемая нагрузкой мощность определяется произведением тока в нагрузке на падение напряжения на ней: P = UI.

При измерении мощности в однофазной цепи переменного тока показание ваттметра соответствует активной мощности (Вт):

где U и I – среднеквадратические значения напряжения и тока нагрузки; φ – фазовый сдвиг между током инапряжением.

Читайте также:  Сделать гитару из подручных материалов

При этом обмотка напряжения ваттметра включается на фазное напряжение, а обмотка тока включается в рассечку провода фазы.

Реактивная мощность (в варах) в лабораторном эксперименте обычно не измеряется, а определяется из выражения

Для нахождения мощности в трехфазной четырехполюсной цепи при несимметричной нагрузке необходимо взять алгебраическую сумму показаний трех ваттметров, включенных в каждую фазу:

Электродинамические ваттметры, предназначенные для измерения мощности в цепях постоянного и переменного тока низкой частоты (16…5000 Гц), выпускаются от 0,1 до 2,5 класса точности. Они рассчитаны на непосредственное включение в цепь с напряжением от 15 до 300 В при токе в цепи от 0,25 до 10 А.

При прямых измерениях не всегда удается получить значение всех исследуемых величин (токов, напряжений, мощности, фазы и др.) методом прямого измерения. Это обусловливается отсутствием специальных приборов прямого измерения или невозможностью подключения прибора к некоторым элементам цепи и другими причинами.

Кроме того, не всегда целесообразно производить непосредственное измерение всех интересующих величин, если они могут быть получены с достаточной точностью из функциональных зависимостей, связывающих их с измеряемыми величинами. Это позволяет проводить эксперимент быстрее и с меньшими аппаратурными затратами за счет уменьшения числа измерений.

Измерение тока с помощью электронных вольтметров. Косвенный метод измерения тока с помощью электронного вольтметра заключается в следующем. В ветвь, в которой необходимо измерить ток, последовательно с нагрузкой включают образцовый резистор R. Падение напряжения на этом резисторе измеряют с помощью электронного вольтметра, так как он работает в широком диапазоне частот и потребляет от измеряемой цепи малую мощность, что способствует обеспечению минимума методической погрешности.

Ток, текущий через резистор R, а следовательно, и по всей цепи (рис. 8.6), определяется законом Ома: , где U показание вольтметра, включенного параллельно резистору R.

Рисунок 8.6–Измерение тока с помощью электронного вольтметра

Включать резистор Rследует в разрыв проводника, идущего от корпуса генератора.

В этом случае корпусная точка измерительного прибора соединяется с корпусом генератора, что обеспечивает меньшее влияние помех и стабильность работы вольтметра. Минимум методической погрешности обеспечивается при правильном выборе сопротивления резистора R. Чем меньше сопротивление R, тем меньше оно оказывает влияние на ток, протекающий в искомой ветви.

С другой стороны, чем меньше падение напряжения на резисторе, тем труднее его точно измерить, поскольку больше сказывается влияние различных наводок, увеличение погрешности вольтметра на малых пределах измерения. Поэтому сопротивление R, а, следовательно, падение напряжения на нем должны быть наибольшими. В этом случае принимают компромиссное решение, выбирая сопротивление R по условию: R 2 Rн.

Для измерения мощности косвенным методом в цепях переменного тока применяются амперметр, вольтметр и фазометр. При этом активная мощность Р определяется по формуле .

Если прямым методом измерены значения напряжения U, тока I и мощности P, величина cosφ определяется расчетным путем: сosφ =

Измерение параметров электрической цепи R, С, L, Z.Основными элементами электрической цепи с сосредоточенными параметрами являются: резистор, конденсатор, катушка индуктивности. Им соответствуют основные параметры: активное сопротивление электрическому току R, емкость С, индуктивность L.

Метод амперметра-вольтметра. Этот метод основан на раздельном измерении тока I в цепи измеряемого сопротивления RХ и напряжения U на его зажимах и на последующем вычислении значения RХ по показаниям измерительных приборов:

RХ = .

При измерении малых сопротивлений порядка 0,01…100 Ом постоянному току применяют схему, показанную на рис. 8.8,а. С помощью реостата R1 устанавливают приемлемое значение тока в цепи.

Рисунок 8.8–Измерение параметров электрической цепи

В схеме (см. рис. 8.8,а) вольтметр показывает значение напряжения на зажимах RХ (U = UХ ), амперметр – сумму токов IА = IV + I, следовательно

,

где IV – ток, проходящий через вольтметр; RV – внутреннее (входное) сопротивление вольтметра

RV >>RX, то RХ .

Абсолютная методическая погрешность ΔRХ определяется по формуле

,

а относительная погрешность (в %)

.

Для измерения больших сопротивлений (до сотен кОм и более) применяют схему (рис. 8.8,б), где амперметр регистрирует значение тока в цепи RХ (I = IА), а вольтметр – сумму падений напряжений (U + UA).

По показаниям приборов можно вычислить результат измерения

,

где RА внутреннее сопротивление амперметра.

Абсолютная погрешность и относительная (в %) .

Из предыдущего выражения следует, что метод амперметра-вольтметра можно применять для измерения активного сопротивления резистора переменному току R, когда его индуктивными и емкостными составляющими сопротивления можно пренебречь; а также для измерения индуктивности L катушки и емкости С конденсатора, отличающихся высокой добротностью (т.е. когда активное сопротивление катушки RL чрезвычайно мало, а сопротивление изоляции конденсатора весьма велико).

Читайте также:  Как правильно отштукатурить откосы

, ,

где f – частота питающего напряжения.

1. Сергеев А.Г., Крохин В.В. Метрология: Учеб. Пособие для вузов. – М.: Логос, 2001. – 408 с

2. Зайдель А. Н. Погрешности измерения физических величин. Л.: Наука, 1985.- 112 с.

3. Бурдун Г.Д., Марков Б.Н. Основы метрологии. – М.: Издательство стандартов, 1975.

4. Тюрин Н.И. Введение в метрологию. – М.: Изд-во стандартов, 1976.

5. ГОСТ 16263-70 Государственная система обеспечения единства измерений. Метрология. Термины и определения.

6. Сена Л.Г. Единицы физических величин и их размерности. – М.: Наука, 1969.

7. Сергеев А.Г., Латышев М.В., Терегеря В.В. Метрология, стандартизация, сертификация: Уч. пос. — М.: Логос, 2003.- 536 с.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома – страшная бессонница, которая потом кажется страшным сном. 8809 – | 7168 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Различают мгновенную, среднюю и импульсную мощности электрических тока.

Мгновенная мощность определяется выражением: p=u*i , где u и i мгновенные значения напряжения и тока в цепи.

Средняя мощность P равна среднему значению мгновенной мощности за время, равное периоду колебания,

где T – период напряжения или тока.

Импульсную мощность определяют как среднюю мощность за время действия импульса напряжения или тока

где tn – длительность импульса напряжения или тока.

В цепях постоянного тока мощность рассчитывается по формулам

где U и I – значение постоянного напряжения и тока, R – сопротивление цепи.

В цепях синусоидального тока различают средние активную, реактивную и полную мощности, которые рассчитывают по формулам

где U и I – действующие значения напряжения и тока в цепи, R, X и Z – активное, реактивное и полное сопротивление цепи, соответственно: – сдвиг фаз.

Различают прямой и косвенный методы измерения мощности.

Косвенный электрический метод измерения мощности основан на использовании амперметра и вольтметра. Две возможные схемы измерения мощности при помощи амперметра и вольтметра приведены на рис. 1.а и б.

Рис.1

Для схемы, изображенной на рис. 1,а. расчетное значение мощности

отличается от мощности, потребляемой нагрузкой, на величину мощности Рv = UаIv , потребляемой вольтметром.

Для схемы, изображенной на pиc. 1,б, расчетное значение мощности, потребляемой нагрузкой,

отличается от мощности потребляемой нагрузкой, на величину мощности РА=UаIн, потребляемой амперметром.

При измерении мощности в цепях переменного тока формулы можно использовать только при резистивной нагрузке, т.е. при cos=1. При реактивной нагрузке в результате расчета получают полную мощность. Для исключения погрешностей, вызванных: подключением измерительных приборов, в результаты расчетов вводят поправки:

для схемы рис. 1,а или

для схемы рис. 1.б, где Rv – сопротивление вольтметра, а Rа – сопротивление амперметра.

Прямой электрический метод измерения мощности основан на использовании электродинамических, ферродинамических или электронных ваттметров. Схемы включение электродинамических и ферродинамических ваттметров приведены на рис. 2. Схема, изображенная на рис. 2,а. аналогична включению амперметра и вольтметра по схеме рис. 1,а. Схема, изображенная на рис. 2,б. аналогична включению амперметра и вольтметра по схеме рис. 1,б.

Уравнение шкалы ваттметра без учета погрешностей, вносимых обмотками, имеет вид

где – показание прибора, k.- коэффициент пропорциональности.

В связи с тем, что катушки ваттметра имеют сопротивление и индуктивность, в показаниях прибора появляется дополнительная погрешность.

При учете сопротивления Rv и индуктивности Lv катушки напряжения ваттметра появляется дополнительная угловая погрешность

где =arctg(Lv/Rv) – дополнительный фазовый сдвиг, вносимый обмоткой ваттметра.

49. Измерение активной и реактивной мощности в трехфазных цепях.

Метод одного Ваттметра.

P=3*Pw

Метод двух ваттметров.

Метод трех ваттметров.

Несимметричная нагрузка с нулевым проводом.

Метод одного Ваттметра.

Метод двух ваттметров.

Несимметричная нагрузка.

Метод трех ваттметров.

Несимметричная нагрузка с нулевым проводом.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *