Феррорезонансный стабилизатор напряжения своими руками

Феррорезонансный стабилизатор напряжения уже давно активно применяется не только в быту, но и в промышленности. Устройства этого класса позволяют выровнять напряжение переменного типа. В основе принципа функционирования заключается эффект электромагнитного резонанса в колебательном контуре. Такие нормализаторы обладают массой достоинств, но также имеют и свои недостатки.

Феррорезонансные явления в электрических сетях

Основные факторы, которые порождают феррорезонансные явления в электрических сетях – это элементы ёмкостного и индуктивного типа. Они способны формировать колебательные контуры в периоды переключения. Этот эффект особо заметен в трансформаторах силового типа, линейного вольтодобавочного, шунтирующих контурах и в аналогичных устройствах, которые оборудуются массивной обмоткой.

Данное явление бывает 2 типов: резонанс токов и напряжения.

Феррорезонанс напряжений возможен, когда в сети имеется индуктивность, характеризующаяся нелинейным вольт-амперным свойством. Данная характеристика свойственна катушкам индуктивности, где сердечники производятся из ферромагнитных компонентов. Особенно это касается выпрямителей линейки НКФ. Такое негативное явление обуславливается небольшим показателем сопротивлений омического и индуктивного типов по отношению к силовым трансформаторам.

Феррорезонанс в трансформаторе напряжения

Когда трансформатор напряжения подключается к сети, в ней формируются последовательно совмещённые LC-цепи, являющие собой контур резонансного типа. При последовательном подключении индуктивного элемента с нелинейным вольт-амперным свойством к элементу ёмкостного типа напряжение в этой зоне цепи характеризуется как активно-индуктивное.

По окончании определённого временного периода значение напряжения на индуктивном элементе становится пиковым, магнитопровод питается, а напряжение на компоненте ёмкостного типа продолжает расти. Феррорезонанс в трансформаторе напряжения наступает, когда напряжение индуктивности и ёмкостного элемента становится равнозначным.

Быстрый переход приложенного напряжения из активно-индуктивного типа в активно-ёмкостной именуется как “опрокидывание фазы”. Такой эффект опасен для электроприборов.

Феррорезонансные стабилизаторы

Феррорезонансные выпрямители не оборудуются встроенным вольтметром, вследствие чего сложно замерять выходной показатель напряжения сети. Отрегулировать величину напряжения собственноручно не получится. Стабилизаторы феррорезонансного типа частично искажают реальные показания, величина погрешности составляет до 12%.

Тем, кто долго пользуется такими устройствами, необходимо помнить, что они способны излучать магнитное поле, которое может нарушить правильное функционирование бытовой электротехники. Стабилизаторы такого класса настраиваются в заводских условиях, никаких дополнительных настроек в быту они не требуют.

Влияние стабилизатора на технику

Феррорезонансный стабилизатор напряжения, принцип работы которого непрост, воздействует на бытовую технику следующим образом:

  • Радиоприёмник – чувствительность приёма сигнала может быть уменьшена, показатель выходной мощности существенно снижается.
  • Музыкальный центр – выходная мощность такой техники может существенно снизиться, стирание и запись новых дисков значительно ухудшаются.
  • Телевизор – при подсоединении к стабилизатору можно наблюдать значительное снижение качества картинки на ТВ, отдельные цвета передаются неправильно.

Электрическая схема современных нормализаторов феррорезонансного типа улучшена, что позволяет им выдерживать большие нагрузки. Такие устройства могут гарантировать точную регулировку сетевого напряжения. Процедура корректировки выполняется трансформатором.

Режимы эксплуатации

Эксплуатационные режимы стабилизаторов зависят от ряда факторов. Прямое влияние имеет показатель мощности и класс устройства. Мощностные характеристики прибора могут быть разными, выбирать их надо с учётом типа подсоединяемой электротехники.

Режимы функционирования выпрямителя зависят от таких типов нагрузки:

Активная нагрузка в чистой форме наблюдается крайне редко. Она необходима только в тех цепях, где переменное значение устройства не имеет ограничений. Нагрузки ёмкостного типа могут применяться только для тех выпрямителей, которые обладают невысокой мощностью.

Принцип действия феррорезонансных стабилизаторов

Обмотка первичного типа, на которую поступает входное напряжение, находится на магнитопроводе. Он обладает большим поперечным сечением, что позволяет держать сердечник в ненасыщенном состоянии. На входе напряжение формирует магнитные потоки.

На зажимах обмотки вторичного типа формируется выходное напряжение. К этой обмотке подсоединяется нагрузка, которая находится на сердечнике, обладает небольшим сечением и пребывает в насыщенном состоянии. При аномалиях сетевого напряжения и магнитного потока его значение фактически не модифицируется, а также неизменным остаётся показатель ЭДС. Во время увеличения магнитного потока некоторая его доля будет замкнута на магнитном шунте.

Магнитный поток принимает синусоидальную форму и при его подходе к амплитудному показателю отдельный его участок переходит в режим насыщения. Повышение магнитного потока при этом прекращается. Замыкание потока по магнитному шунту будет осуществляться лишь тогда, когда показатель магнитного потока сравнится с амплитудным.

Наличие конденсатора позволяет феррорезонансному стабилизатору работать с увеличенным мощностным коэффициентом. Показатель стабилизации зависит от уровня наклона кривой горизонтального типа по отношению к абсциссе. Наклон данного участка значительный, поэтому обрести высокий уровень стабилизации без вспомогательного оборудования невозможно.

Достоинства и недостатки

Среди ключевых плюсов феррорезонансных выпрямителей можно отметить:

  • стойкость к перегрузкам;
  • обширный интервал эксплуатационных значений;
  • быстрота регулировки;
  • ток обретает форму синуса;
  • высокая точность выравнивания.

Но при всех этих преимуществах имеются у приборов данного класса и свои минусы:

  • Качество функционирования зависит от показателя нагрузки.
  • При работе формируются внешние электромагнитные помехи.
  • Нестабильное функционирование при небольших нагрузках.
  • Высокие показатели массы и размеров.
  • Возникновение шума при работе.

Большинство современных моделей лишены таких недостатков, но они выделяются немалой стоимостью, порой выше, нежели цена ИБП. Также устройства не оборудуются вольтметром, что лишает возможности их регулировки.

Советы по выбору

Конструкция выпрямителей постоянно модернизируется, повышается качество их схем, что позволяет переносить значительные феррорезонансные перенапряжения. Современные модели выделяются высоким уровнем быстродействия, точностью настройки и длительным эксплуатационным сроком. Режимы устанавливаются мощностными характеристиками прибора и его типом.

Основное условие выбора феррорезонансного стабилизатора – место его подсоединения. Обычно его устанавливают на входе электросети в помещение либо вблизи бытовой техники. Если выпрямитель устанавливается для всей техники, необходимо выбирать устройства с высоким уровнем мощности и подключать их сразу же за распределительным щитком.

Феррорезонансный стабилизатор напряжения своими руками

Феррорезонансная схема является наиболее простой для собственноручного изготовления. В основе её функционирования лежит эффект магнитного резонанса.

Конструкцию довольно мощного выпрямителя феррорезонансного типа можно собрать из трёх элементов:

  • первичного дросселя;
  • вторичного дросселя;
  • конденсатора.

При этом простота такого варианта сопровождается целым набором неудобств. Мощный нормализатор, изготовленный по феррорезонансной схеме, выходит массивным, громоздким и тяжёлым.

Электрическая сеть во многих наших домах не может похвастаться высоким качеством, в особенности это актуально для сельской местности, которая удалена от города. Поэтому нередко происходят перепады напряжения. Местные производители электрических приборов учитывают данное обстоятельство и предусматривают запас прочности. Но многие люди пользуются в основном заграничной техникой, для которой такие скачки губительны. В связи с чем необходимо пользоваться специальными устройствами. И не обязательно их покупать в магазинах, можно изготовить стабилизатор напряжения 220В своими руками по схеме. Задача эта не совсем сложная, если делать все по инструкции.

Только перед сборкой необходимо ознакомиться с существующими видами подобных устройств и узнать, каков их принцип действия.

Читайте также:  Обои с папоротником в интерьере

Вынужденная мера

В идеале электросеть может работать эффективно при незначительных перепадах напряжения – не более 10%, как большую, так и в меньшую сторону от номинала 220В. Однако, как показывают реальные условия эксплуатации, изменения эти временами довольно значительны. А это уже грозит выходом из строя подключенных приборов.

И чтобы избежать таких неприятностей, создано такое устройство, как стабилизатор напряжения. И если ток выйдет за границы допустимого значения, устройство в автоматическом режиме обесточит подключенные электроприборы.

Чем еще может быть вызвана необходимость в таком устройстве и почему некоторые люди задумываются над изготовлением самодельного стабилизатора напряжения 220В по схеме? Наличие такого помощника оправдано в силу следующих возможностей:

  • Бытовая техника гарантировано будет работать долгое время.
  • Мониторинг напряжения электросети.
  • Заданный уровень напряжения поддерживается автоматически.
  • Перепады тока не сказываются на электроприборах.

Если в месте проживания такие электрические «аномалии» случаются часто, стоит задуматься над приобретением хорошего стабилизатора. В крайнем случае собрать его самостоятельно.

Разновидности стабилизаторов

Главная составляющая любого такого оберегающего электрического устройства – это его автотрансформатор регулируемого типа. В настоящее время многими производителями выпускается несколько видов приборов, у которых реализована своя технология стабилизации напряжения. К таковым относятся две основные схемы стабилизатора напряжения 220В для дома:

Существуют еще и феррорезонансные аналоги, которые в быту практически не используются, но о них будет сказано чуть позднее. Теперь же стоит перейти к описанию существующих моделей.

Электромеханические (сервоприводные) устройства

Регулировка напряжения электросети производится посредством ползунка, который передвигается по обмотке. Одновременно с этим задействуется разное количество витков. Все мы учились в школе, а некоторые может быть имели дело с реостатом на уроках физики.

По такому аналогичному принципу работает электромеханический стабилизатор напряжения. Только перемещение ползунка осуществляется не вручную, а при помощи электродвигателя, называемого сервоприводом. Знать устройство этих приборов просто необходимо, если есть желание изготовить стабилизатор напряжения 220В своими руками по схеме.

Электромеханические устройства отличаются высокой надежностью, и обеспечивают плавную регулировку напряжения. Характерные преимущества:

  • Стабилизаторы работают под любой нагрузкой.
  • Ресурс существенно больше, чем у прочих аналогов.
  • Доступная стоимость (вполовину ниже, чем у электронных приборов)

К сожалению, при всех достоинствах присутствуют и недостатки:

  • В силу механического устройства задержка срабатывания очень заметна.
  • В таких приборах применяются угольные контакты, которые подвержены естественному износу с течением времени.
  • Присутствие шума при работе, хоть и его практически не слышно.
  • Малый рабочий диапазон 140-260 В.

Стоит заметить, что в отличие от инверторного стабилизатора напряжения 220В (своими руками по схеме его можно изготовить вопреки кажущимся сложностям), здесь еще имеется трансформатор. А что касается принципа работы, то анализ напряжения производится электронным блоком управления. Если он заметит значительные отклонения от номинального значения, он посылает команду на перемещение ползунка.

Ток регулируется путем подключения большего количества витков трансформатора. На тот случай, если прибор не успевает своевременно среагировать на чрезмерное превышение напряжения, в устройстве стабилизатора предусмотрено реле.

Электронные стабилизаторы

Принцип действия электронных приборов устроен немного иначе. Здесь в основе лежат несколько схем:

  • тиристорная или семисторная;
  • релейная;
  • инверторная.

Работают такие устройства бесшумно, за исключением релейных стабилизаторов. У них переключение режимов осуществляется при помощи силовых реле, которыми управляет электронный блок управления. Поскольку они механически разъединяют контакты, то во время эксплуатации таких приборов время от времени слышен шум. Для кого-то это может быть серьезным минусом.

Поэтому лучшим выбором будет приобретение или изготовление инверторного стабилизатора напряжения 220В своими руками, схему которого найти несложно.

Другие электронные аналоги имеют специальные ключи тиристоры и семисторы и поэтому работают они в бесшумном режиме. Также это позволяет стабилизаторам срабатывать практически мгновенно. Среди прочих достоинств можно выделить:

  • отсутствие нагрева;
  • рабочий диапазон составляет 85-305 В (у релейных приборах он равен 100-280 В);
  • компактные габариты;
  • низкая стоимость (опять-таки применимо к релейным стабилизаторам).

Общий недостаток электронных устройств заключается в ступенчатой схеме регулировки напряжение электросети. К тому же тиристорные приборы имеют самую высокую стоимость, но в то же время и отличаются весьма долгим сроком службы.

Инверторная технология

Отличительной особенностью таких устройств является отсутствие трансформатора в конструкции прибора. Однако регулировка напряжения осуществляется электронным способом, а поэтому он относится к предыдущему типу, но является как бы отдельным классом.

Если есть желание изготовить самодельный стабилизатор напряжения 220В, схему которого нетрудно достать, то лучше выбрать именно инверторную технологию. Ведь тут интересен сам принцип работы. Инверторные стабилизаторы оснащаются двойными фильтрами, что позволяет минимизировать отклонения напряжения от номинального значения в пределах 0,5%. Поступающий в устройство ток, преобразуется в постоянное напряжение, проходит через весь прибор, а перед выходом снова принимает прежнюю форму.

Феррорезонансные аналоги

Принцип действия феррорезонансных стабилизаторов основывается на эффекте магниторезонанса, возникающий в той системе с дросселями и конденсаторами. В работе они немного похожи на электромеханические устройства, только вместо ползунка здесь ферромагнитный сердечник, перемещающийся относительно катушек.

Подобная система отличается высокой надежностью, однако имеет большие размеры и издает много шума при работе. Также присутствует серьезный недостаток – функционируют такие приборы лишь под нагрузкой.

Если ранее такая схема сетевого стабилизатора напряжения 220В пользовалась популярностью, то теперь от нее лучше отказаться. К тому же здесь не исключены синусоидальные искажения. По этой причине для современных бытовых электрических приборов такой вариант не подходит. Но если в хозяйстве имеются мощные электродвигатели, ручные инструменты, сварочные аппараты, то такие стабилизаторы еще применимы.

Феррорезонансные стабилизаторы были широко распространены в быту 20 или 30 лет назад. В то время через них питались старые телевизоры, поскольку имели особую конструкцию, которая не позволяло безопасно использовать электросеть напрямую. Существуют современные модели этих стабилизаторов, которые лишены многих недостатков, но стоят они очень дорого.

Самодельный аппарат

А какую можно реализовать схему стабилизатора напряжения 220В своими руками? Самый простой вариант стабилизатора состоит из минимального количества комплектующих:

  • трансформатор;
  • конденсатор;
  • диоды;
  • резистор;
  • провода (для соединения микросхем).

Используя простейшие навыки, собрать устройство не так сложно, как может показаться. Но при наличии старого сварочного аппарата все упрощается, поскольку он практически уже собран. Однако проблема в том, что не у каждого человека найдется такой сварочный аппарата, а поэтому лучше подыскать другой способ для самодельного устройства.

По этой причине рассмотрим, как можно изготовить некоторый аналог симисторного стабилизатора. Данный прибор будет рассчитан на входной рабочий диапазон 130-270 В, а на выход будет подаваться от 205 до 230 В. Большая разница входного тока это скорее плюс, а вот для выходного – это уже минус. Но для многих бытовых приборов эта разница допустима.

Что касается мощности, то схема тиристорного стабилизатора напряжения 220В, своими руками изготавливаемого, допускает подключение электроприборов до 6 кВт. Переключение нагрузки производится в течение 10 миллисекунд.

Преимущества самодельного устройства

У стабилизатора, изготовленного самостоятельно, есть своим плюсы и минусы, о которых непременно следует знать. Главные преимущества:

  • низкая стоимость;
  • ремонтопригодность;
  • самостоятельное проведение диагностики.

Самое очевидное достоинство заключается в невысокой себестоимости. Все детали нужно будет приобрести по отдельности, а это все равно несравнимо с готовыми стабилизаторами.

Читайте также:  Котлы балтгаз турбо отзывы

В случае выхода из строя какого-нибудь элемента приобретенного стабилизатора напряжения, вряд ли его можно заменить самому. В этом случае остается только вызывать мастера на дом или везти его в сервисный центр. Даже если имеются определенные знания в области электротехники, найти подходящую деталь не так просто. Совсем другое дело, если прибор был изготовлен собственноручно. Все детали уже знакомы и для покупки новой, достаточно наведаться в магазин.

Если кто-либо ранее уже собирал схему стабилизатора напряжения 220В 10кВт своими руками, значит, человек уже разбирается во многих тонкостях. Это значит, что выявить неисправность не составит особого труда.

Недостатки, которые следует учитывать

Теперь коснемся некоторых минусов. Кто и как бы себя ни нахваливал, он не сможет тягаться с настоящими профессионалами по электрической части. По этой простой причине надежность самодельного стабилизатора будет уступать фирменным аналогам. Обусловлено это тем, что на производстве используются высокоточные контрольно-измерительные приборы, которых нет у рядовых потребителей.

Другой момент – более широкий рабочий диапазон напряжения. Если у магазинного варианта он составляет от 215 до 220В, то у аппарата, созданного в домашних условиях, этот параметр будет превышен в 2 или даже 5 раз. А это уже критично для большого количества современной бытовой техники.

Комплектующие

Чтобы собрать по схеме электронный стабилизатор напряжения 220В своими руками, не обойтись без таких компонентов:

  • блока питания;
  • выпрямителя;
  • компаратора;
  • контроллера;
  • усилителей;
  • светодиодов;
  • узла задержки;
  • автотрансформатора;
  • оптронных ключей;
  • выключателя-предохранителя.

Также нужен будет паяльник и пинцет.

Особенности домашнего производства

Все элементы будут размещаться на печатной плате размером 115х90 мм. Для чего можно взять фольгированный стеклотекстолит. Схему расположения всех рабочих компонентов можно распечатать на лазерном принтере, а после перенести все, используя утюг. Сам пример ниже.

Теперь можно переходить к изготовлению трансформаторов. И здесь не все так просто. Всего нужно изготовить два элемента. Для первого нужно взять:

  • магнитопровод с площадью сечения 187 мм 2 ;
  • провода ПЭВ-2 в количестве трех штук.

Причем один из проводов должен быть толщиной 0,064 мм, а другой – 0,185 мм. Для начала создается первичная обмотка с количеством витков – 8669. У последующих обмоток витков поменьше – 522.

Электрическая схема стабилизатора напряжения 220В предусматривает наличие двух трансформаторов. Поэтому после сборки первого элемента стоит переходить к изготовлению второго. А для этого уже нужен тороидальный магнитопровод. Обмотка здесь также делается из провода ПЭВ-2, разве что число витков будет равным 455. Кроме того, от второго трансформатора должны исходит семь отводов. Для первых трех нужен провод диаметром 3 мм, а остальные 4 будут из шин сечением 18 мм². Благодаря этому трансформатора не будет нагреваться во время использования стабилизатора.

Задачу можно существенно упростить, если взять два уже готовых элемента ТПК-2-2 12В и соединить их последовательно. Все прочие необходимые детали нужно приобрести в магазине.

Сборочный процесс

Сборка стабилизатора начинается с установки микросхемы на теплоотвод. Это может быть алюминиевая пластина площадью не менее 15 см 2 , на которой также следует расположить симисторы. Для эффективной работы стабилизатора не обойтись без микроконтроллера, для чего можно использовать микросхему КР1554ЛП5.

Конечно, это не схема инверторного стабилизатора напряжения 220В, но для бытовых нужд такого прибора вполне достаточно. На следующем этапе нужно расположить светодиоды, причем брать нужно мигающие. Однако можно использовать и прочие, к примеру, АЛ307КМ либо L1543SRC-Е, у которых яркое красное свечение. Если по какой-нибудь причине не удастся расположить их как того требует схема, можно разместить их в любом удобном месте.

Если кто-либо увлекался подобными сборками ранее, то собрать собственный стабилизатор не составит большого труда. Это не только обогащение опыта, но и существенная экономия, поскольку несколько тысяч рублей останутся нетронутыми.

Советы по монтажу

Некоторые полезные рекомендации, которые позволят правильно эксплуатировать самодельный стабилизатор. После того как устройство собрано, необходимо найти подходящее место, где будет обеспечено хорошая вентиляция.

Необходимо правильно реализовать схему подключения стабилизатора напряжения 220В для дома. И тут есть два способа:

  1. После счетчика – подходит, когда нужно защитить всю электросеть квартиры или дома. Непосредственно на выход от электросчетчика ставится автомат, а регулятор напряжения подключается уже к его выводу. К самому стабилизатору при необходимости тоже можно подключить автоматический выключатель.
  2. Подключение в розетку – в этом случае под защитой окажутся только те приборы, которые подключены к регулятору.

В процессе работы прибор будет греться, а тесное пространство не обеспечит должное охлаждение. В результате стабилизатор быстро выйдет из строя. Оптимальный вариант в этом случае – открытая площадка.

Если это невозможно в силу разных причин, специально для прибора можно соорудить нишу. При этом необходимо выдержать не менее 10 см от поверхности ниши до стенок стабилизатора. После сборки устройства стоит его проверить и обратить внимание на наличие каких-либо посторонних шумов.

После того как по схеме стабилизатор напряжения 220В своими руками успешно создан, не стоит думать, что на этом все заканчивается. Необходимо каждый год проводить профилактические работы, которые связаны с осмотром стабилизатора и перетяжкой контактов при необходимости. Только так можно быть уверенным в том, что самодельный «продукт» будет работать также эффективно, как и производственные аналоги.

В качестве заключения

Вне всякого сомнения, самостоятельное изготовление стабилизатора требует определенных знаний и навыков. Также нужно понимать, как именно работают такие устройства, и знать некоторые нюансы. Помимо этого, потребуется приобрести все необходимые комплектующие и выполнить правильный монтаж.

Возможно, вся работу для кого-то покажется сложной. Поэтому если нет уверенности в своих силах, то лучше пойти в магазин не за деталями, а за самим прибором. К тому же на все модели предусмотрен определенный гарантийный период.

Нормальная работа радиотехнической аппаратуры возможна лишь при стабиль­ном напряжении сети, близком к номинальному значению. В тех случаях, когда это напряжение нестабильно, для поддержания нормального напряжения питания исполь­зуются автотрансформаторы с контрольным вольтметром или феррорезонансные ста­билизаторы.

При использовании автотрансформатора необходимо следить за контрольным вольтметром и вручную устанавливать номинальное напряжение питания радиотех­нического устройства.

Значительное преимущество перед автотрансформаторами, особенно при резких скачках напряжения, имеют феррорезонансные стабилизаторы, позволяющие автома­тически поддерживать номинальное напряжение питания приемника, телевизора, маг­нитофона и т. д. Они отличаются сравнительной простотой и надежностью.

Феррорезонансный стабилизатор напряжения, схема которого приведена на рис. 1, рассчитан на работу от сети переменного тока напряжением 127 или 220 в и обеспе­чивает стабилизированное напряжение 127 или 220 в на нагрузке мощностью до 320 вт. Точность стабилизации — 2%, к.п.д. — порядка 80%.

Основными элементами стабилизатора являются: дроссель Др1, автотрансформа­тор Аm1 и конденсатор С1.

Дроссель Дp1 имеет сердечник с воздушным зазором и работает в ненасыщен­ном режиме. Он содержит три обмотки: две основные I и II и компенсационную III.

Автотрансформатор Аm1 работает в режиме насыщения и служит основным ре­гулирующим элементом. Конденсатор С1 включен параллельно обмотке автотрансфор­матора и образует с нею колебательный контур.

К входу автотрансформатора (отводам 1 — 3 или 1 — 10) подводится сетевое на­пряжение. Имеющиеся на автотрансформаторе Аm1 отводы необходимы для повыше­ния выходного напряжения с целью компенсации падения напряжения на обмотках I, 11, III дросселя Дри

Читайте также:  Тумба с раковиной красная для ванной

Часть витков между отводами 3 — 4 (127 в) или 10 — 11 (220 в) автотрансформа­тора совместно с обмоткой 1 — 3 (127 в) или 1 — 10 (220 в) образуют повышающую обмотку автотрансформатора. Секции 4 — 18 (127 в) или 11 — 18 (220 в) служат для создания добавочных ампервитков, наличие которых обеспечивает работу автотранс­форматора в режиме насыщения даже при самом низком напряжении сети (102 в или 176 в).

При повышении напряжения в сети ток через автотрансформатор (колебательный контур) возрастает и вследствие этого большая часть приращенного напряжения упадет на основных обмотках I, II дросселя Др1. Поэтому напряжение на автотранс­форматоре, определяющее стабильность выходного напряжения, возрастет незначи­тельно. Для уменьшения и этого незначительного увеличения напряжения последова­тельно с нагрузкой включается компенсационная обмотка III дросселя Др1. Созда­ваемое на этой обмотке напряжение противоположно по знаку напряжению на основ­ных обмотках I, 11, вследствие этого общее напряжение, подводимое к нагрузке, бу­дет изменяться крайне мало.

При уменьшении напряжения сети процесс стабилизации происходит аналогично, т. е. падение напряжения на основных обмотках I, II дросселя Др1 уменьшится в большей степени, чем уменьшится напряжение на части обмотки автотрансформатора Amh работающего в режиме насыщения. Напряжение, создаваемое в компенсацией­ной обмотке, также уменьшится, а напряжение на нагрузке останется почти неиз­менным.

Таким образом, стабилизация выходного напряжения происходит вследствие не­пропорционального распределения приращения входного напряжения между отдель­ными звеньями стабилизатора. Это оказалось возможным осуществить благодаря не­линейной зависимости между током и напряжением в резонансном контуре, образо­ванном индуктивностью обмотки автотрансформатора Аm1 и емкостью конденсатора С1.

Сердечники автотрансформатора Am1 и дросселя Др1 собираются из пластин УШ-32 (рис. 2). Обрезать пластины не требуется. Сборка сердечника автотрансформа­тора производится вперекрышку. Толщина набора 50 мм. Сборка сердечника дросселя Др1 производится встык, толщина набора 32 мм. В зазор между пластинами поме­щают прокладку из прессшпана толщиной 1,5 мм.

Каркасы для дросселя и автотрансформатора нужно сделать из текстолита или прессшпана толщиной 1,5 мм.

Секция I автотрансформатора (отводы 1 — 13) наматывается проводом ПЭЛ 1,5 и содержит 420 витков с отводами от 195, 200, 215, 220, 345, 350, 355, 360, 365, 375 и 380 витков. Секция II (отводы 14 — 18) содержит 580 витков провода ПЭЛ 1,0 с отводами от 520, 540 и 560. витков. При сборке обе секции соединяются последова­тельно.

Обмотки I к II дросселя Др1 наматываются проводом ПЭЛ 1,5 и содержат по 266 витков каждая. Обмотка III содержит 50 витков провода ПЭЛ 1,5 с отводами от 15, 18, 21, 24, 27, 30, 35 и 40 витков. С помощью этих отводов при регулировке устанавливается величина стабилизированного напряжения, а также необходимая точ­ность стабилизации.

При намотке следует обращать внимание на изоляцию между слоями и обмот­ками. Между слоями прокладывается один слой бумаги толщиной 0,05 мм, а между обмотками — два слоя бумаги толщиной 0,12 — 0,15 мм. Конденсатор Ci состоит из нескольких конденсаторов КБГ-МН на рабочее напряжение 1000 в, соединенных меж­ду собой параллельно.

При сборке сердечников Am1 и Др1 пластины следует набивать плотно и хорошо стягивать их планками крепления. Это намного уменьшит «гудение» стабилизатора при работе.

Собранный стабилизатор требует регулировки, которая сводится к подбору ве­личины воздушного зазора- в сердечнике дросселя и места подключения выводов к обмоткам автотрансформатора и компенсационной обмотке дросселя.

Для регулировки стабилизатора необходимы два вольтметра переменного тока (вольтметр V2 обязательно электромагнитной системы), лабораторный автотрансфор- . матор (типа ЛАТР-2 или ему подобные) и нагрузка, в качестве которой- можно ис­пользовать осветительные лампы. Схема подключения стабилизатора для регулиров­ки приведена на рис. 3 (можно применить только один вольтметр и тумблер для его переключения).

Сначала все обмотки своими отводами подключаются так, как показано на рис. 1, остальные неиспользуемые отводы должны быть хорошо изолированы.

Далее настройка производится на напряжение 127 в, затем на 220 в. Установив соответственно переключатели В1 и В3, стабилизатор включают в сеть при номиналь­ной нагрузке на минимальное напряжение от лабораторного автотрансформатора. За­тем плавно повышают это напряжение и следят за показанием выходного вольтмет­ра (V2), которое должно сначала возрастать медленно, а потом быстрее и, наконец, скачком возрасти до нужной величины (127 или 220 в). При дальнейшем увеличении этого входного напряжения напряжение на выходе обычно увеличивается очень мед­ленно.

Показание вольтметра V2, при котором произошел скачок напряжения, указывает нижний предел сетевого напряжения, при котором стабилизатор будет нормально ра­ботать. Если этот предел окажется выше заданного (в нашем случае более 105 б), то нужно уменьшить зазоры в стыках между пластинами сердечника автотрансформато­ра или уменьшить нагрузку стабилизатора.

Если выходное напряжение после скачка продолжает увеличиваться при уве­личении входного напряжения, то причиной этого может быть неправильное вклю­чение компенсационной обмотки III дросселя. Концы обмотки в этом случае надо попробовать поменять местами и более точно подобрать число витков, которое вклю­чается последовательно с нагрузкой.

Для получения наибольшей стабильности при значительном снижении напря­жения сети (более 20%) нужно подобрать место подключения верхнего (по схе­ме рис. 1) конца конденсатора С1 к одному из отводов автотрансформатора, при котором напряжение на резонансном контуре имеет наибольшее значение (порядка 600 в).

Иногда после скачка напряжение на выходе стабилизатора значительно отличается от того напряжения, на которое рассчитан стабилизатор. В этом случае нуж­но подать на вход стабилизатора номинальное напряжение сети и затем тщатель­но подобрать место подключения отвода «а» к автотрансформатору Am.]. Если напря­жение ниже нормального, нужно увеличить число витков, а если выше — умень­шить.

При регулировке следует иметь в виду, что чем большее число витков компен­сационной обмотки дросселя Др1 используется для подключения в цепь, тем луч­ше стабильность, но при этом величина выходного напряжения уменьшается. Если при изменении напряжения сети в заданных пределах (±20%) выходное напряже­ние изменяется более чем на ±2%, то необходимо подобрать воздушный зазор в дросселе, а если выходное напряжение при увеличении напряжения сети уменьша­ется, то нужно уменьшить число витков обмотки III дросселя или увеличить воз­душный зазор в сердечнике.

При налаживании стабилизатора для работы на 220 в практически надо подобрать лишь место подключения отвода «б», чем определяется выходное напряжение стабилизатора.

Режим работы стабилизатора без нагрузки бывает наиболее тяжелым, а поэтому его следует избегать.

Стабилизатор монтируется на стальном угловом шасси и заключается в сталь­ной кожух с вентиляционными отверстиями. Общие габариты стабилизатора 150X350X200 мм. На передней панели располагаются предохранители, выключатель сети, переключатели В1, В2, гнезда выходного напряжения и индикаторная лам­почка.

Кожух и шасси должны изготовляться из достаточно толстого материала (по­рядка 1,5 мм), а автотрансформатор и дроссель крепятся через виброизоляционные прокладки (резину, войлок и т. п.). Иначе при работе стабилизатор будет сильно гудеть.

Г-299372 от 21ДЧ-72 г. Изд. № 2/6405 Зак. 180

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *