Фаза тока на конденсаторе

Соберем цепь с конденсатором, в которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим заряды и разряды конденсатора сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит переменный ток.

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4—6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Читайте также:  Осмотр трассы подземных кабелей

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение частоты тока увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в цепи постоянного тока.

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 π f , С—емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула закона Ома для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью включено активное сопротивление. Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Читайте также:  Как пришивать руки и ноги кукле

Когда к конденсатору приложено синусоидальное напряжение, он периодически заряжается и разряжается. Ввиду переменного характера напряжения периодически меняется и полярность заряда конденсатора. Ток в конденсаторе ic достигает своего амплитудного значения каждый раз, когда напряжение uC на нем проходит через нуль (рис. 1). Таким образом, синусоида тока iC опережает синусоиду напряжения uc на 90°.

Фазовый сдвиг:

Реактивное сопротивление конденсатора

Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как

емкостное реактивное сопротивление (емкостной реактанс) Хc.

Величина емкостного реактанса Хc зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем:

где Хс – реактивное емкостное сопротивление, Ом;

С – емкость конденсатора, Ф;

= 2πf- угловая частота синусоидального напряжения (тока).

Цепи синусоидального с катушками индуктивности

Напряжение и ток катушки индуктивности

Когда к катушке индуктивности подведено синусоидальное напряжение, ток в ней отстает от синусоиды напряжения на 90°. Соответственно, мгновенное значение тока достигает амплитудного значения на четверть периода позже, чем мгновенное значение напряжения (рис. 2). В этом рассуждении пренебрегается активным сопротивлением катушки.

Лабораторная работа 3

Последовательное соединение резистора

И конденсатора

Когда к цепи (рис. 3.1) с последовательным соединением резистора и катушки индуктивности подается переменное синусоидальное напряжение, один и тот же синусоидальный ток имеет место в обоих компонентах цепи.

Между напряжениями UR, UС и U существуют фазовые сдвиги, обусловленные емкостным реактивным сопротивлением XС. Они могут быть представлены с помощью векторной диаграммы напряжений (рис. 3. 2).

Фазовый сдвиг между током I и напряжением на резисторе Ur отсутствует, тогда как сдвиг между этим током и падением напряжения на конденсаторе Uc равен 90° (т.е. ток опережает напряжение на 90). При этом сдвиг между полным напряжением цепи U и током I определяется соотношением между сопротивлениями Хс и R.

Если каждую сторону треугольника напряжений разделить на ток, то получим треугольник сопротивлений (рис. 3.3). В треугольнике сопротивлений Z представляет собой так называемое полное сопротивление цепи.

Из-за фазового сдвига между током и напряжением в цепях, подобных данной, простое арифметическое сложение действующих или амплитудных значений напряжений на отдельных элементах цепи невозможно. Невозможно и сложение разнородных (активных и реактивных) сопротивлений. Однако в векторной форме

Действующее значение полного напряжения цепи, как следует из векторной диаграммы,

Полное сопротивление цепи:

Активное сопротивление цепи:

Емкостное реактивное сопротивление цепи:

Угол сдвига фаз

Экспериментальная часть

Задание

Для цепи с последовательным соединением резистора и конденсатора измерьте и вычислите действующие значения падений напряжения на резисторе Ur и конденсаторе UC, ток I, угол сдвига фаз φ, полное сопротивление цепи Z и емкостное реактивное сопротивление ХC и активное сопротивление R.

Порядок выполнения работы

· Соберите цепь согласно схеме (рис. 3.4), подсоедините регулируемый источник синусоидального напряжения и установите его параметры: U = 5 В, f = 1 кГц.

· Выполните мультиметрами измерения действующих значений тока и напряжений, указанных в таблице 1.

U, B UR, B UC, B I, мА φ, град. R, Ом ХΔ, Ом Z, Ом Примечание

Полное сопротивление цепи

Активное сопротивление цепи

Емкостное реактивное сопротивление цепи

·Выберите масштабы и постройте векторную диаграмму напряжений (рис. 5) и треугольник сопротивлений (рис. 6).

Контрольные вопросы:

  1. Что называется периодом?
  2. Что называется частотой?
  3. Для переменного напряжения и тока записать выражения мгновенных напряжений и токов, дать определение амплитуды и начальной фазы.
  4. Дать определение действующего напряжения (тока), указать его связь с амплитудой напряжения (тока).
  5. Дать определения мгновенной и активной мощности.
  6. Объяснить назначение приборов в измерительной цепи.
  7. Какие элементы обладают активным сопротивлением.
  8. Какой вид имеет временная диаграмма напряжений и тока при последовательном соединении R и C-цепей?
  9. Изобразите треугольники напряжений, сопротивлений и мощностей для цепи с активно-ёмкостной нагрузкой. Чем они отличаются от треугольников для активно-индуктивной нагрузки?

Лабораторная работа 4

Дата добавления: 2016-12-04 ; просмотров: 2263 | Нарушение авторских прав

Когда к конденсатору приложено синусоидальное напряжение, он периодически заряжается и разряжается. Ввиду переменного характера напряжения периодически меняется и полярность заряда конденсатора. Ток в конденсаторе ic достигает своего амплитудного значения каждый раз, когда напряжение uC на нем проходит через нуль (рис. 1). Таким образом, синусоида тока iC опережает синусоиду напряжения uc на 90°.

Читайте также:  Как сделать зимний маникюр

Фазовый сдвиг:

Реактивное сопротивление конденсатора

Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как

емкостное реактивное сопротивление (емкостной реактанс) Хc.

Величина емкостного реактанса Хc зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем:

где Хс – реактивное емкостное сопротивление, Ом;

С – емкость конденсатора, Ф;

= 2πf- угловая частота синусоидального напряжения (тока).

Цепи синусоидального с катушками индуктивности

Напряжение и ток катушки индуктивности

Когда к катушке индуктивности подведено синусоидальное напряжение, ток в ней отстает от синусоиды напряжения на 90°. Соответственно, мгновенное значение тока достигает амплитудного значения на четверть периода позже, чем мгновенное значение напряжения (рис. 2). В этом рассуждении пренебрегается активным сопротивлением катушки.

Лабораторная работа 3

Последовательное соединение резистора

И конденсатора

Когда к цепи (рис. 3.1) с последовательным соединением резистора и катушки индуктивности подается переменное синусоидальное напряжение, один и тот же синусоидальный ток имеет место в обоих компонентах цепи.

Между напряжениями UR, UС и U существуют фазовые сдвиги, обусловленные емкостным реактивным сопротивлением XС. Они могут быть представлены с помощью векторной диаграммы напряжений (рис. 3. 2).

Фазовый сдвиг между током I и напряжением на резисторе Ur отсутствует, тогда как сдвиг между этим током и падением напряжения на конденсаторе Uc равен 90° (т.е. ток опережает напряжение на 90). При этом сдвиг между полным напряжением цепи U и током I определяется соотношением между сопротивлениями Хс и R.

Если каждую сторону треугольника напряжений разделить на ток, то получим треугольник сопротивлений (рис. 3.3). В треугольнике сопротивлений Z представляет собой так называемое полное сопротивление цепи.

Из-за фазового сдвига между током и напряжением в цепях, подобных данной, простое арифметическое сложение действующих или амплитудных значений напряжений на отдельных элементах цепи невозможно. Невозможно и сложение разнородных (активных и реактивных) сопротивлений. Однако в векторной форме

Действующее значение полного напряжения цепи, как следует из векторной диаграммы,

Полное сопротивление цепи:

Активное сопротивление цепи:

Емкостное реактивное сопротивление цепи:

Угол сдвига фаз

Экспериментальная часть

Задание

Для цепи с последовательным соединением резистора и конденсатора измерьте и вычислите действующие значения падений напряжения на резисторе Ur и конденсаторе UC, ток I, угол сдвига фаз φ, полное сопротивление цепи Z и емкостное реактивное сопротивление ХC и активное сопротивление R.

Порядок выполнения работы

· Соберите цепь согласно схеме (рис. 3.4), подсоедините регулируемый источник синусоидального напряжения и установите его параметры: U = 5 В, f = 1 кГц.

· Выполните мультиметрами измерения действующих значений тока и напряжений, указанных в таблице 1.

U, B UR, B UC, B I, мА φ, град. R, Ом ХΔ, Ом Z, Ом Примечание

Полное сопротивление цепи

Активное сопротивление цепи

Емкостное реактивное сопротивление цепи

·Выберите масштабы и постройте векторную диаграмму напряжений (рис. 5) и треугольник сопротивлений (рис. 6).

Контрольные вопросы:

  1. Что называется периодом?
  2. Что называется частотой?
  3. Для переменного напряжения и тока записать выражения мгновенных напряжений и токов, дать определение амплитуды и начальной фазы.
  4. Дать определение действующего напряжения (тока), указать его связь с амплитудой напряжения (тока).
  5. Дать определения мгновенной и активной мощности.
  6. Объяснить назначение приборов в измерительной цепи.
  7. Какие элементы обладают активным сопротивлением.
  8. Какой вид имеет временная диаграмма напряжений и тока при последовательном соединении R и C-цепей?
  9. Изобразите треугольники напряжений, сопротивлений и мощностей для цепи с активно-ёмкостной нагрузкой. Чем они отличаются от треугольников для активно-индуктивной нагрузки?

Лабораторная работа 4

Дата добавления: 2016-12-04 ; просмотров: 2263 | Нарушение авторских прав

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *