Что относится к источникам тока

Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.

Источник тока используется в качестве простейшей модели некоторых реальных источников электрической энергии или как часть более сложных моделей реальных источников, содержащих другие электрические элементы. Следует заметить, что электрические характеристики реальных источников могут быть близки к свойствам источника тока или его противоположности — источника напряжения.

В электротехнике источником тока называют любой источник электрической энергии.

Содержание

Свойства [ править | править код ]

Идеальный источник тока [ править | править код ]

Сила тока, текущего через идеальный источник тока, всегда одинакова по определению:

I = const <displaystyle I=< ext>>

Напряжение на клеммах идеального источника тока (не путать с реальным источником!) зависит только от сопротивления R <displaystyle R> подключенной к нему нагрузки:

U = I ⋅ R <displaystyle U=Icdot R>

Мощность, отдаваемая источником тока в нагрузку:

P = I 2 ⋅ R <displaystyle P=I^<2>cdot R>

Поскольку ток через идеальный источник тока всегда одинаков, то напряжение на его клеммах и мощность, передаваемая им в нагрузку, с ростом сопротивления нагрузки возрастают, достигая в пределе бесконечных значений.

Реальный источник [ править | править код ]

В линейном приближении любой реальный источник тока (не путать с описанным выше источником тока — моделью!) или иной двухполюсник может быть представлен в виде модели, содержащей, по меньшей мере, два элемента: идеальный источник и внутреннее сопротивление (проводимость). Одна из двух простейших моделей — модель Тевенина — содержит источник ЭДС, соединенный последовательно с сопротивлением, а другая, противоположная ей, модель Нортона — источник тока, соединенный параллельно с проводимостью (т. е. идеальным резистором, свойства которого принято характеризовать значением проводимости). Соответственно, реальный источник в линейном приближении может быть описан при помощи двух параметров: ЭДС E <displaystyle <mathcal >> источника напряжения (или силы тока I <displaystyle I> источника тока) и внутреннего сопротивления r <displaystyle r> (или внутренней проводимости y = 1 / r <displaystyle y=1/r> ).

Можно показать, что реальный источник тока с внутренним сопротивлением r <displaystyle r> эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление r <displaystyle r> и ЭДС E = I ⋅ r <displaystyle <mathcal >=Icdot r> .

Напряжение на клеммах реального источника тока равно

U out = I R ⋅ r R + r = I R 1 + R / r . <displaystyle U_< ext>=I<frac >=I<frac <1+R/r>>.>

Сила тока в цепи равна

I out = I r R + r = I 1 1 + R / r . <displaystyle I_< ext>=I<frac >=I<frac <1><1+R/r>>.>

Мощность, отдаваемая реальным источником тока в сеть, равна

P out = I 2 R ( 1 + R / r ) 2 . <displaystyle P_< ext>=I^<2><frac <left(1+R/r
ight)^<2>>>.>

Реальные генераторы тока имеют различные ограничения (например, по напряжению на его выходе), а также нелинейные зависимости от внешних условий. В частности, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Примеры [ править | править код ]

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени ( t ≪ L / R <displaystyle tll L/R> ) после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) приводит к резкому возрастанию напряжения между контактами и к пробою зазора.

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник переменного тока. Следовательно, размыкание вторичной цепи трансформатора тока недопустимо. Вместо этого при необходимости перекоммутации в цепи вторичной обмотки (без отключения линии) эту обмотку предварительно шунтируют.

Применение [ править | править код ]

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частности операционных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (ИТУН). Применяется в основном для полевых транзисторов и электронных ламп.
  • Источник тока, управляемый током (ИТУТ). Применяется, как правило, для биполярных транзисторов.
Читайте также:  Натяжной потолок сделать отверстие

В схеме токового зеркала (рисунок 2) ток нагрузки в правой ветви задается равным эталонному току в левой ветви, так что по отношению к нагрузке R2 эта схема выступает как источник тока.

Обозначения [ править | править код ]

Существуют различные варианты обозначений источника тока. Наиболее часто встречаются обозначения (a) и (b). Вариант (c) устанавливается ГОСТ [1] и IEC [2] . Стрелка в кружке указывает положительное направление тока в цепи на выходе источника. Варианты (d) и (e) встречаются в зарубежной литературе. При выборе обозначения нужно быть осмотрительным и использовать пояснения, чтобы не допускать путаницы с источниками напряжения.

Первую запись хочу посвятить электрическому току. Материал я взял из учебника по физике за 8 класс. Автор А.В. Перышкин. Издательство ДРОФА, Москва 2006.

§ 32 Электрический ток. Источники электрического тока.

Когда говорят об использовании электрической энергии в быту,
на производстве или транспорте, то имеют в виду работу электрического
тока. Электрический ток подводят к потребителю от электростанции
по проводам. Поэтому, когда в домах неожиданно гаснут
электрические лампы или прекращается движение электропоездов,
троллейбусов, говорят, что в проводах исчез ток.

Что же такое электрический ток и что необходимо для его возникновения
и существования в течение нужного нам времени?

Слово «ток» означает движение или течение чего-то.

Что может перемещаться в проводах, соединяющих электростанцию
с потребителями электрической энергии?

Мы уже знаем, что в телах имеются электроны, движением которых
объясняются различные электрические явления (см. § 31).
Электроны обладают отрицательным электрическим зарядом. Электрическими
зарядами могут обладать и более крупные частицы вещества — ионы. Следовательно, в проводниках могут перемещаться различные заряженные частицы.

Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Под действием этого поля заряженные частицы, которые могут свободно перемещаться в этом проводнике, придут в движение в направлении действия на них электрических сил. Возникнет электрический ток.

Чтобы электрический ток в проводниках существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.

Источники тока бывают различные, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделенные частицы накапливаются на полюсах источника тока. Так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой — отрицательно. Если полюсы источника соединить проводником, то под действием электрического поля свободные заряженные частицы в проводнике начнут двигаться в определенном направлении, возникнет электрический ток.

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение механической, внутренней или какой-нибудь другой энергии в электрическую. Так, например, в электрофорной машине (рис. 42) в электрическую энергию превращается механическая энергия.

Можно осуществить и превращение внутренней энергии в электрическую. Если две проволоки, изготовленные из различных металлов, спаять, а затем нагреть место спая, то в проволоках возникнет электрический ток (рис. 43).

Такой источник тока называется термоэлементом. В нем внутренняя энергия нагревателя превращается в электрическую энергию. При освещении некоторых веществ, например селена, оксида меди (I), кремния, наблюдается потеря отрицательного электрического заряда (рис. 44).

Это явление называется фотоэффектом. На нем основано устройство и действие фотоэлементов. Термоэлементы и фотоэлементы изучают в курсе физики старших классов.

Рассмотрим более подробно устройство и работу двух источников тока
гальванического элемента и аккумулятора, которые будем использовать в опытах по электричеству.

В гальваническом элементе (рис. 45) происходят химические реакции и внутренняя энергия, выделяющаяся при этих реакциях, превращается в электрическую.

Читайте также:  Штукатурка вебер ветонит тт40 отзывы

Изображенный па рисунке 46 элемент состоит из цинкового сосуда (корпуса) Ц. В корпус вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещен в смесь оксида марганца (IV) MnO2 и размельченного углерода С. Пространство между цинковым корпусом и смесью MnO2 с С заполнено желеобразным раствором соли (хлорида аммония NH4Cl) P.

В ходе химической реакции цинка Zn с хлоридом аммония NH4Cl цинковый сосуд становится отрицательно заряженным.

Оксид марганца несет положительный заряд, а вставленный в него угольный стержень используется для передачи положительного заряда.

Между заряженными угольным стержнем и цинковым сосудом, которые называются электродами, возникает электрическое поле. Если угольный стержень и цинковый сосуд соединить проводником, то по всей длине под действием электрического поля свободные электроны придут в упорядоченное движение. Возникнет электрический ток.

Гальванические элементы — самые распространенные в мире источники постоянного тока. Их достоинством является удобство и безопасность в использовании.

В быту часто применяют батарейки, которые можно подзаряжать многократно — аккумуляторы (от лат. слова аккумуляторе — накоплять). Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещенных в раствор серной кислоты.

Чтобы аккумулятор стал источником тока, его надо зарядить. Для зарядки через аккумулятор пропускают постоянный ток от какого-нибудь источника. В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой — отрицательно. Когда аккумулятор зарядится, его можно использовать как самостоятельный источник тока. Полюсы аккумуляторов обозначены знаками «+» и «-». При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный — с отрицательным полюсом.

Кроме свинцовых, или кислотных, аккумуляторов широко применяют железоникелевые, или щелочные, аккумуляторы. В них используется раствор щелочи, а пластины состоят одна из спрессованного железного порошка, вторая — из пероксида никеля. На рисунке 47 изображена батарея из трех таких аккумуляторов.

Аккумуляторы имеют широкое и разнообразное применение. Они
служат для освещения железнодорожных вагонов, автомобилей, для запуска автомобильного двигателя. Батареи аккумуляторов питают электроэнергией подводную
лодку под водой. Радиопередатчики и научная аппаратура на искусственных спутниках 3емли также получают электропитание от аккумуляторов, установленных на спутнике.

На электростанциях электрический ток получают с помощью генераторов (от лат. слова генератор — создатель, производитель). Этот электрический ток используется в промышленности, на транспорте, в сельском хозяйстве.

1. Что такое электрический ток?

2. Что нужно создать в проводнике, чтобы в нем возник и существовал ток?

3. Какие превращения энергии происходят внутри источника тока?

4. Как устроен сухой гальванический элемент?

5. Что является положительным и отрицательным полюсами батареи?

6. Как устроен аккумулятор?

7. Где применяются аккумуляторы?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Читайте также:  Как сделать овальную крышу дома

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Химические источники

Все химические источники можно разбить на 3 группы:

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

Солевые, или иначе “сухие”, батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *