Чем достигается эффект при торможении электрическим тормозом

Электрическое торможение подразделяется на электродинамическое и электромагнитное рельсовое.

Электродинамическое торможение основано на принципе обратимости электрических машин, то есть переводе тягового электродвигателя в режим генератора. В этом случае, машинист включает электрический ток в обмотки возбуждения тяговых электродвигателей. При поступательном движении локомотива колёсная пара через редуктор вращает якорь в магнитном поле системы возбуждения статора. В якоре наводится электрический ток, который направляется на реостат (реостатное торможение) или преобразователь для передачи тока в контактную сеть (рекуперативное торможение). Так механическая энергия движущегося локомотива преобразуется в электрическую энергию при одновременном образовании тормозной силы.

Применение электродинамического торможения локомотивов позволяет:

· уменьшить износ тормозных колодок и бандажей колёсных пар;

· повысить безопасность движения поездов вследствие наличия на локомотивах дополнительной системы торможения;

· повысить скорости движения поездов на затяжных спусках;

· уменьшить затраты на содержание механической системы торможения;

· применить автоматическое регулирование торможения для поддержания по программе автоведения определённой скорости движения, например: в поездах метрополитена и, особенно в поездах высокоскоростного движения («Сапсан»).

Основными недостатками электродинамического торможения являются: – получение тормозного эффекта только в процессе движения локомотива и только тех осей подвижного состава, которые имеют тяговые электродвигатели;

· рост температуры нагрева обмоток тяговых электродвигателей;

· увеличение веса локомотива из-за применения специальных тормозных реостатов;

· усложнение системы управления работой силового оборудования электроподвижного состава.

Электродинамическое торможение локомотивов и электроподвижного состава является вспомогательным тормозом. Оно применяется наряду с колёсно-колодочными и другими системами торможения.

На тепловозах (ТЭМ2, 2ТЭ116, ТЭП70 и др.), оборудованных электродинамическим тормозом, применяют системы независимого возбуждения ТЭД при их работе в генераторном режиме. Питание обмоток возбуждения двигателей при электродинамическом торможении осуществляется от тягового генератора тепловоза.

Регулирование тормозной силой производится изменением напряжения (тягового генератора) на обмотку возбуждения ТЭД и, соответственно, величины магнитного потока двигателей. При постоянной частоте вращения коленчатого вала дизеля напряжение тягового генератора регулируется током обмотки возбуждения самого генератора.

На маневровых тепловозах ТЭМ2 и ЧМЭ3, оборудованных электрическим тормозом, тормозную силу регулируют изменением общего сопротивления Rт тормозных резисторов (рисунок 3).

Рисунок 3. Принципиальная схема реостатного торможения двигателей.

Уравнение электрического равновесия при реостатном торможении

где ∑rя – сопротивление обмоток якорей тяговых электродвигателей;

Rт – сопротивление тормозного резистора;

IТЭД – сила тока в цепи якоря ТЭД;

Ф – магнитный поток в обмотках возбуждения ТЭД;

v – скорость движения локомотива, км/ч;

с – электрическая постоянная, отражающая конструкционные параметры двигателя.

Скорость движения локомотива при электрическом реостатном торможении

, км/ч. (25)

Тормозная сила, создаваемая электродвигателями в режиме генератора при взаимодействии колёс с рельсами

, кН, (26)

где nТЭД – число тяговых электродвигателей;

ΔВ – механические и магнитные потери в электрической передаче, кН:

, (27)

где ΔРмех – механические потери мощности в тяговых электрических машинах локомотива, кВт;

ΔРмагн – потери в магнитной системе тяговых электродвигателей, кВт;

ΔРтп – потери мощности в тяговом приводе колёсных пар локомотива, кВт;

v – скорость движения локомотива в режиме торможения, км/ч.

Рисунок 4. Принципиальные схемы соединений концов обмоток якорей и обмоток возбуждения.

Реостатное торможение при последовательном возбуждении тяговых электродвигателей широко используется на электроподвижном составе постоянного тока. При торможении тяговые электродвигатели отключаются от контактной сети и замыкаются на тормозные резисторы Rт (рисунок 4а). Переход тяговой машины электровоза в генераторный режим происходит благодаря сохранившемуся в ней магнитному потоку (остаточному магнетизму).

При реостатном торможении электроподвижного состава с самовозбуждением тяговые электродвигатели переключают либо концы Я и ЯЯ якоря (рисунок 4б), либо К и КК обмотки возбуждения (рисунок 4в).

Рисунок 5. Токовые характеристики реостатного торможения.

Достоинство такого торможения – относительная простота устройства и независимость от работы контактной сети. К недостаткам следует отнести заметную задержку эффективного торможения, так как в начальный период работы (1-2 с) остаточный магнетизм в магнитной системе электродвигателя невелик. На (рисунок 5) приведены токовые характеристики реостатного торможения с самовозбуждением ТЭД при различных сопротивлениях тормозного реостата Rт. Изменяя сопротивление реостата, регулируют силу тока ТЭД и, соответственно, тормозную силу Вт. Штриховыми линиями показаны ограничения тормозной силы: 1 – по силе сцепления колёс с рельсами; 2 – по максимальной силе тока ТЭД; 3 – по допустимому напряжению ТЭД; 4 – по максимальной скорости движения.

Зависимость тормозной силы Вт от силы тока IТЭД приведена на (рисунок 6). На этом же рисунке показана характеристика изменения электромагнитной силы FТЭД, которая в зависимости от направления тока обеспечивает создание либо тормозного момента, либо силы тяги при взаимодействии колёсных пар с рельсами. Разницу между характеристиками Вт = f(IТЭД) и FТЭД= f(IТЭД) составляют механические и магнитные потери ΔВ в электрической передаче локомотива.

Рисунок 6. Зависимость тормозной силы и электромагнитной силы тяговых двигателей от тока тяговых электродвигателей.

Следует отметить, что на локомотиве не допускается одновременное применение электрического и пневматического торможения из-за большой вероятности заклинивания колёсных пар и образования юза.

Электромагнитные тормоза. Тормозной эффект достигается за счёт силы электромагнитного притяжения к рельсам специальных стальных тормозных башмаков (рисунок 7), на пружинах подвешенных к боковым балкам рамы тележки локомотива. Тормозные башмаки имеют направляющие, обеспечивающие их вертикальное перемещение относительно боковин рамы тележки. При питании обмоток возбуждения башмаков током от аккумуляторной батареи создаётся магнитный поток, охватывающий сердечник тормозного башмака и рельса – башмаки притягиваются к рельсам и возникает тормозная сила. Эта тормозная сила не ограничена сцеплением колёс с рельсами.

Рисунок 7. Схема рельсового тормоза.

Поэтому в высокоскоростном поезде, при наличии электромагнитного тормоза, дополнительно имеется несколько систем торможения, которые в сочетании с электромагнитным тормозом, обеспечивают наибольшую эффективность применения в определённом диапазоне скоростей движения. Например, скоростной электропоезд ЭР200 оборудован: колёсно-колодочным пневматическим тормозом; электрическим реостатным тормозом с самовозбуждением; электропневматическим колёсно-колодочным тормозом; дисковым тормозом; магнитно-рельсовым тормозом; ручным тормозом для удержания поезда на месте. Для управления скорости движения поезда контроллер машиниста дополнительно имеет четыре тормозных положения, обеспечивающих безопасное сочетание различных систем торможения.

Читайте также:  Каре с челкой на бок и объемным

На рисунке 8 представлены опытные зависимости тормозного пути Sт в м от начальной скорости движения v в км/ч электропоезда ЭР200 одиночными и в сочетании различных систем при торможении: 1 – электромагнитные рельсовые тормоза; 2 – дисковые тормоза; 3 – при совместном действии дискового и электромагнитного рельсового тормозных систем.

Анализ представленных зависимостей убедительно доказывает высокую эффективность применения комбинированных тормозов в скоростном движении поездов.

Рисунок 8. Зависимость тормозного пути от скорости движения и системы торможения электропоезда ЭР200.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10642 – | 8013 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Электрические машины обладают уникальным свойством обратимости, т.е. при некоторых условиях они могут работать как электродвигатель, а при других как генератор электрической энергии. Обладают этим свойством и тяговые двигатели электровозов и тепловозов.

Применение электродинамического торможения (ЭДТ)

Электродинамическое торможение – это режим когда кинетическая энергия поезда преобразуется в электрическую и далее передается другим потребителям при рекуперативном торможении или гасится на тормозных резисторах при реостатном торможении.

Рекуперативное торможение возможно только на электровозах, при этом генерируемая энергия возвращается в контактную сеть, где может быть потреблена другими электровозами следующими в тяговом режиме, а при отсутствии таковых возвращена в электрическую сеть энергосистемы страны. Существуют локомотивы с функцией рекуперативного торможения, как для постоянного тока, так и для переменного. Реостатное торможение применяется в основном на тепловозах, а также на некоторых сериях электровозов (ВЛ-80т, ЧС-4т). При данном виде торможения электрическая энергия, вырабатываемая тяговыми электродвигателями, расходуется на специальных тормозных резисторах, где она преобразуется в тепловую энергию.

Необходимость применения электродинамического торможения

Применение электродинамического торможения целесообразно с многих точек зрения. Его применение позволяет повысить безопасность движения поездов – поскольку при применении ЭДТ пневматические тормоза не задействованы, то тормозная система поезда всегда готова к применению. В связи с этим отсутствует опасность следования на запрещающий сигнал светофора с истощённой, незаряженной тормозной магистралью.

Применение электродинамического торможения позволяет повысить скорость движения. Так, при использовании пневматического торможения скорость движения сначала возрастает до максимальной, а затем при торможении ее необходимо существенно снизить, чтобы успеть зарядить тормозную систему до повторного возрастания скорости до максимальной. Таким образом, средняя скорость движения будет существенно ниже допустимой скорости движения по данному участку, особенно на участках с большими уклонами. При электродинамическом торможении можно следовать при скорости максимально приближенной к допустимой длительное время. Также необходимо отметить возможность выхода со спуска на площадку или на подъем с максимально допустимой скоростью. Применяя пневматические тормоза такого добиться более затруднительно. Кроме того применение рекуперативного торможения может существенно уменьшить расход электрической энергии затраченной на проведение поезда по участку. Особенно существенное снижение происходит на участках с горным профилем, на котором существуют «вредные спуски».

Порядок применения рекуперативного торможения

При приемке локомотива необходимо убедиться в исправности электрической схемы рекуперативного торможения. Проверяется работа возбудителей, плавность нарастания тока возбуждения при увеличении позиций. Работу электроблокировочного клапана и клапана замещения . Электроблокировочный клапан препятствует наполнению тормозных цилиндров локомотива от воздухораспределителя при собранной схеме рекуперации. Это необходимо для предупреждения юза колесных пар, поскольку при рекуперативном торможении создается большая тормозная сила и если к ней добавить тормозную силу тормозных колодок, то суммарно они могут стать больше чем сила сцепления колеса с рельсом. Электроблокировочный клапан, как правило, дополняется еще одним пневмоэлектрическим датчиком, контролирующим давление в ТЦ создаваемое краном вспомогательного тормоза. Поскольку исключить действие вспомогательного тормоза локомотива в режиме рекуперативного торможения невозможно, то для предупреждения юза колесных пар давление в ТЦ ограничивается на уровне 1,2-1,5 Атм. При превышении данного значения происходит автоматический разбор схемы рекуперативного торможения. Клапан замещения играет роль защиты для предупреждения от разрыва поезда в случае внезапного отключения схемы рекуперации. Поскольку при рекуперативном торможении вся тормозная сила сосредоточена на локомотиве и наибольшее ее значение приложено между локомотивом и первым вагоном, то демпферные устройства первых вагонов имеют наибольшее сжатие. В случае если происходит внезапное отключение рекуперативного торможения, то сжатые пружины резко разжимаются и при этом локомотив получает значительное ускорение. С учетом его значительной массы данный рывок может привести к обрыву автосцепки. Для исключения данных случаев на электровозах устанавливается клапан замещения – при срыве рекуперации он автоматически, без участия машиниста, производит наполнение тормозных цилиндров до давления 1,5 2 Атм. После разбора схемы рекуперативного торможения, действие данного клапана прекращается.

При следовании по участку необходимо заранее определить места, на которых будет применяться рекуперативное торможение и скорость его применения. Скорость следования в режиме ЭДТ в любом случае должна быть на 5-10 км/час ниже допустимой. Это требование необходимо из условий безопасности движения. Так, при срыве рекуперативного торможения, машинисту необходимо некоторое время для разбора схемы рекуперации и применения автотормозов поезда. Поскольку действие автотормозов происходит с задержкой, то за это время скорость может значительно увеличиться и превысить разрешенную.

При следовании по спуску сбор схемы рекуперации необходимо начинать на 5-10 км/час ниже, чем необходимо для длительного следования. Для этого сначала необходимо сжать головную часть поезда, для чего производят наполнение тормозных цилиндров до давления 0,5-1,0 Атм краном вспомогательного тормоза. Производится запуск мотор-генераторов (возбудителей), селективной рукояткой устанавливается соединение тяговых двигателей соответствующее планируемой скорости движения. Постепенно увеличивая ток возбуждения ТЭД, контролируют появление тормозного тока. После появления тормозного тока необходимо выдержать несколько секунд для более полного сжатия состава, после чего отпустив тормоза локомотива увеличивать тормозную силу увеличением тока рекуперации. Недопускается быстро увеличивать тормозную силу, поскольку это может привести к набеганию хвостовой части поезда и возникновению значительных продольно-динамических реакций. Если скорость ниже необходимой, то силу тока устанавливают несколько меньшей, чем необходимо для установившегося движения. По мере роста скорости ток ТЭД, а следовательно, и тормозная сила, будет возрастать что впоследствии приведет к стабилизации скорости. При дальнейшем движении по спуску необходимо контролировать изменения напряжения контактной сети и при необходимости производить корректировку тормозного тока. При наличии на спуске участков различной крутизны необходимо корректировать тормозной ток для поддержания стабильной скорости. Так при наличии впереди более пологого участка необходимо снижать тормозную силу, а после его проследования и выхода вновь на более крутой спуск ее увеличить. Изменения должны происходить плавно с выдержкой по несколько секунд на каждой позиции. Если пологий участок достаточно длинный, то допускается заблаговременное снижение тормозного тока. Это позволит увеличить скорость перед пологим участком и не допустить значительного замедления на нем.

Читайте также:  Каллы цветы выращивание в саду в сибири

При необходимости прекращения рекуперативного торможения тормозной ток плавно уменьшается, это позволяет демпферным устройствам головных вагонов «разжаться». После снижения тока якоря до 50-150 А, производят наполнение тормозных цилиндров краном вспомогательного тормоза до давления 0,8-1,0 Атм, после чего производят отключение рекуперативного торможения. После того как действие рекуперативного торможения прекратилось, увеличивают давление в ТЦ до 1,5-2,0 Атм и после выдержки 10-15 сек плавно, ступенями, производят отпуск вспомогательного тормоза. Выключают мотор-генератор, в случае если далее будет необходим тяговый режим, то производят соответствующие переключения, если же планируется вновь применять рекуперативный режим, то переключения можно не производить. Выключение режима ЭДТ лучше производить с таким расчетом, чтобы в конце спуска и переходе на подъем или площадку поезд развил максимально-допустимую скорость. Данный метод позволяет значительную часть подъема проследовать на выбеге или с уменьшенными токами, что позволит уменьшить расход электроэнергии и защитить ТЭД от перегрева.

Достоинства и недостатки видов ЭДТ

Для всех видов ЭДТ недостатком является то, что при следовании по спуску тяговые электродвигатели находятся в работе, в связи с чем их температура не снижается, либо снижается медленно, а при следовании с током выше часового – повышается. Поэтому, если за спуском расположен подъем, то на нем может произойти перегрев ТЭД. Возникновение данной ситуации конечно маловероятно, но, тем не менее, при вождении тяжелых поездов на затяжных подъемах и спусках необходимо учитывать данное обстоятельство. Еще одним недостатком является то, что при ЭДТ под воздействием реакции якоря существенно изменяется местоположение физической нейтрали. В данном случае коммутация в коллекторно-щеточном узле происходит в точке с ненулевым потенциалом, что ведет к увеличению искрения, опасности возникновения кругового огня по коллектору, повышенному износу щеток и коллектора. В современных двигателях устанавливаются компенсационные обмотки, которые несколько уменьшают данный недостаток.

Реостатное торможение

К достоинствам реостатного торможения можно отнести относительно простую схему, тормозные характеристики не зависят от внешних факторов (колебания напряжения контактной сети). На электровозах переменного тока не требуется сложное преобразование постоянного тока в переменный. Применение реостатного торможения возможно практически до полной остановки поезда.

К недостаткам данного вида можно отнести ограниченную мощность, которая определяется мощностью рассеивания тормозных резисторов, а также необходимость применения охлаждающих вентиляторов для них.

Рекуперативное торможение

Одним из основных достоинств рекуперативного торможения является возврат электрической энергии и снижение ее общего расхода на тягу поездов. Второе – это то, что рекуперативное торможение является более мощным по сравнению с реостатным, в данном случае она ограничена мощностью тяговых двигателей и наличием потребителей. К достоинствам также можно отнести автоматические тормозные характеристики. При правильно выбранном соединении и позиции происходит автоматическое поддержание выбранной скорости (относительно небольшие изменения) при изменениях профиля пути. Так, если по каким-то причинам произошло снижение скорости, то в ответ на это уменьшается ток рекуперации и как следствие – замедляющие усилие. Тем самым скорость прекращает снижаться и стабилизируется на новом уровне. При росте скорости ток рекуперации наоборот возрастает, а вместе с ним и замедляющее усилие, что также приводит к ее стабилизации.

К недостаткам рекуперативного торможения можно отнести более сложную схему работы ТЭД, зависимость тормозных характеристик от напряжения в контактной сети. От нее также зависит и отдаваемая мощность в рекуперативном режиме, и даже сама возможность его применения. Поскольку для возникновения эффекта рекуперации необходимо превышение напряжения вырабатываемого ТЭД над напряжением в контактной сети, то при повышенном напряжении в ней применение рекуперативного торможения становится невозможным. Также к недостаткам можно отнести невозможность применения рекуперативного торможения при малых скоростях движения, поскольку даже последовательно соединенные ТЭД не вырабатывают достаточного напряжения для возникновения рекуперативного эффекта. Необходимо также отметить тот фактор, когда при значительном изменении напряжения контактной сети изменяется ток рекуперации и соответственно тормозная сила электровоза. При возникновении таких ситуаций машинисту необходимо самому корректировать ток рекуперации. В 80-е годы ХХ века производились работы по улучшению работы схемы рекуперативного торможения. Так на электровозах ВЛ-11 впервые была применена система автоматического управления рекуперативным торможением (САУРТ). Данная система производила стабилизацию якорного тока ТЭД независимо от изменения напряжения в контактной сети или скорости движения. Однако в данном виде пропадал эффект автоматических тормозных характеристик. Так, например, при снижении скорости снижалось напряжение, вырабатываемое ТЭД, и как следствие снижение якорного тока. Система САУРТ для поддержания тока якоря на заданном уровне производила повышение тока возбуждения, таким образом, при снижении скорости ток якоря оставался постоянным, а ток возбуждения возрастал, что приводило к усилению замедляющей силы и к еще большему снижению скорости. С данной системой отпала необходимость контролировать ток рекуперации при колебаниях напряжения в контактной сети, но появилась необходимость контролировать скорость движения и при необходимости корректировать ток якоря. Тем не менее, несмотря на имеющиеся недостатки, применение рекуперативного торможения наиболее желательно.

Читайте также:  Дублирование экрана айфона на телевизор sony

ЭДТ на современных локомотивах

Современные локомотивы оборудуются микропроцессорными системами управления локомотива, которые позволяют в значительной степени улучшить работу электродинамического торможения. В этих системах могут быть реализованы функции автоматического поддержания заданной скорости или тормозного усилия, производится стабилизация замедляющей силы при изменениях напряжения в контактной сети. На новых локомотивах реализованы оба вида торможения. Так, в основном диапазоне скоростей применяется рекуперативное торможение, а на малой скорости происходит автоматический переход на реостатное торможение и диапазон его применения распространяется практически до остановки. Возможно подключение тормозных реостатов и в рекуперативном режиме. Оно производится, когда напряжение в контактной сети приближается к максимально-допустимому и при этом требуется усиление замедляющей силы. В данной ситуации тормозные сопротивления потребляют часть мощности вырабатываемой электровозом, позволяя тем самым сохранить или усилить замедляющий эффект. Кроме того на современных локомотивах отсутствует электромашинный преобразователь необходимый для возбуждения тяговых электродвигателей. Этот громоздкий и металлоемкий агрегат, со сложными схемами возбуждения заменили полупроводниковые преобразователи. Они гораздо эффективнее регулируют ток возбуждения, обладают высоким быстродействием и не требуют большого обслуживания.

Эффективным средством снижения скорости движения поезда является электрическое торможение. Оно обладает механической устойчивостью, – это означает что тормозная сила автоматически возрастает с ростом скорости. Электрическое торможение позволяет значительно повысить безопасность движения поездов, т.к. при нем пневматические тормоза сохраняются в резерве. Регулирование тормозной силы осуществляется достаточно легко и плавно, что позволяет вести поезд по спуску со скоростью близкой к максимально допустимой, без перепадов, свойственных пневматическим тормозам.

Преимуществом электрического торможения является значительно меньшая склонность колес к заклиниванию (юзу) при больших значениях тормозной силы, чем при механическом торможении, и способность к самозащите колес от юза. В этом случае юз, как правило, проявляется в форме частичного проскальзывания колес по рельсу без резкой потери сцепления, как это имеет место при механическом торможении.

При создании электровозов с электрическим торможением используется свойство обратимости электрических машин. Если якорь двигателя вращается в поле остаточного магнетизма сердечников полюсов, наводимая в проводниках обмотки якоря э.д.с. создает разность потенциалов между плюсовыми и минусовыми щеткодержателями. Однако ток по обмоткам не идет, т.к. при указанных условиях внешняя цепь двигателей разомкнута.

Для получения необходимого тормозного эффекта следует отключить все ТД от сети, произвести ряд переключений в электрических цепях и затем подключить двигатели к потребителю электроэнергии. По способу применения этих потребителей различают рекуперативное и реостатное торможение.

Рекуперативное торможение Его обычно используют с целью поддержания равномерной скорости движения по спускам. Решение о переходе на режим рекуперативного торможения машинист принимает с учетом уровня напряжения контактной сети и расположения электровоза по отношению к тяговым подстанциям. Схема соединения якорей тяговых двигателей выбирается в зависимости от скорости движения поезда. При малой скорости (15-30 км/ч) применяется последовательное соединение якорей ТД. В диапазоне скоростей 25-60 км/ч используется последовательно-параллельное соединение, при скорости 50-55 км/ч и выше – параллельное.

В режим рекуперативного торможения можно перевести только электродвигатели с независимым, параллельным и смешанным возбуждением. При изменении направления нагрузочного момента (при переходе электровоза на спуск) часто вращения якоря становится больше n0 э.д.с. – больше напряжения сети, ток и вращающий момент изменяют свое направление и машина переходит из двигательного режима в генераторный. При этом электромагнитный момент направлен против вращения якоря, а выработанная генератором электрическая энергия отдается в сеть.

Двигатель с последовательным возбуждением не может быть переведен в режим рекуперативного торможения, т.к. при уменьшение внешней нагрузки, т.е. вращающего момента двигателя, частота вращения возрастает и он идет вразнос. Следовательно, не представляется возможным изменить направление вращающего момента двигателя и перейти через промежуточный режим холостого хода, что необходимо для перевода его с двигательного в генераторный режим. Поэтому для осуществления рекуперативного торможения обмотку возбуждения такого ТД необходимо переключить на независимое питание от специального электромашинного или полупроводникового возбудителя. При таком переключении ТД начинает работать как генератор с независимым возбуждением.

Реостатное торможение. При реостатном торможении ТД работают как генераторы и включаются на тормозные резисторы, в которых электрическая энергия, выработанная генератором во время торможения поезда, превращается в тепловую. Реостатное торможение может применяться как при высоких, так и при низких частотах вращения, т.к. напряжение генератора в этом случае не связано с напряжением сети и может быть установлено таким, какое необходимо для получения требуемой тормозной силы.

При уменьшении частоты вращения ТД в процессе реостатного торможения будет уменьшаться создаваемое им напряжение, а следовательно, ток якоря и развиваемый им тормозной момент (тормозная сила). Чтобы поддержать тормозную силу на определенном уровне по мере уменьшения частоты вращения, необходимо уменьшать сопротивление тормозного резистора. С этой цель на электровозе ЧС8 применяется вторая ступень реостатного тормоза при которой шунтируется часть тормозных резисторов.

Дата добавления: 2014-11-16 ; Просмотров: 1495 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *